
J. Appl. Cryst. (2021). 54,  doi:10.1107/S1600576720014892        Supporting information 

 
Volume 54 (2021) 

Supporting information for article: 

Constrained geometrical analysis of complete K-line patterns for 
calibrationless auto-indexing  

Gábor Bortel, Miklós Tegze and Gyula Faigel 

 

  



Supporting Information
for Journal of Applied Crystallography article

Constrained geometrical analysis of
complete K-line patterns for

calibrationless auto-indexing
by

Gábor Bortel*, Miklós Tegze, Gyula Faigel

Wigner Research Centre for Physics

H-1525, P.O.Box 49, Budapest, Hungary

bortel.gabor@wigner.hu

Contents

Introduction

Coordinate system and parameters

Use case 1 - Cone parameters from apex and 3 points

Use case 2 - Conic section from parameters

Use case 3 - Nearest point of a conic section



Introduction
The geometry of Kossel lines can be described with cones having a common apex at the source
point. The normal to each set of lattice planes defines a cone axis. The opening angle of a cone is
related to the Bragg angle defined by the wavelength of the radiation producing the Kossel lines and
the given lattice plane spacing. If one intercepts this radiation field emerging along the generatrices
of  these  cones  with  a  planar  detector,  will  obtain  conic  sections,  i.e.  ellipses,  hyperbolas  or
parabolas. These are the typical experimental manifestation of the Kossel lines.

Here we provide useful mathematical formulae and a specific parameter set to describe both the
conic sections and the cones themselves, and define the quantities to be minimized when optimizing
the parameters of this geometry to obtain the best fit to an experimental Kossel pattern.

Coordinate system and parameters
Without posing any restriction we can choose our coordinate system, such that the planar detector
and hence the conic sections lie in the xy  plane. The origin can also be chosen arbitrarily in this
plane (conveniently either the corner or center point of the detector). Then we must place our source

point i.e. the common apex of the cones in a general s=(sx , s y , sz)  point (Figure S1).

Figure S1. Coordinate system, parameters of the cone and the conic section in the base plane.

A cone has 6 (=3+2+1) independent parameters, the position of its apex, s=(sx , s y , sz) , direction of

its axis  e=(ex , e y ,e z) ;  |e|=1 , and its half opening angle,  γ . For the axis direction we choose
polar parameters in the physical convention ( θ  polar and  ϕ  azimuthal angles), to eliminate the
unit vector condition i.e. e=(cosθ cosϕ ,cosθ sinϕ ,sinθ ) .



In the following we describe various problems and derive their solutions using our parameter set of
(s x , s y , sz ,θ ,ϕ ,γ ) . The need for and application of these results are explained in the manuscript.

Use case 1 - Cone parameters from apex and 3 points
3 points are given in the xy  plane, u=(ux ,u y ,0) , v(v x , v y ,0)  and w=(wx ,w y ,0)  and the apex

of a cone is at  s=(sx , s y , sz) . Determine  (θ ,ϕ ,γ )  parameters of the cone whose conic section
crosses the 3 points (in the same branch, if it is a hyperbola)!

We could substitute  u ,  v ,  w  into the general cone equation (see below) and solve the set of 3

equations for (θ ,ϕ ,γ )  while treating (s x , s y , sz)  as known parameters. However, this would lead
to a complicated system of equations. Instead, we follow a solution based on geometry (Figure S2).

Figure S2. Determination of cone parameters from apex and 3 points.

The  u−s ,  v−s ,  w−s  vectors  are  all  generatrices  of  the  cone.  The  points  defined  by  the
corresponding unit vectors originated from the apex of the cone can be written as:

ue=s+
u−s
|u−s| ,     ve=s+

v−s
|v−s| ,     we=s+

w−s
|w−s|

These points lie on a circle, whose plane is perpendicular to the axis of the cone,  e=(ex , e y ,e z) .
Then the direction of the axis can be determined from the cross product of any two vectors between
these points on the circle:

e =
(ue – ve)×(ve –w e)
|(ue – ve)×(ve –w e)|

=
(ve –we )×(we – ue)
|(ve –we )×(we – ue)|

=
(w e – ue)×(ue – ve)
|(w e – ue)×(ue – ve)|

Substituting the u=(ux ,u y ,0) , v=(vx , v y ,0) , w=(w x ,w y ,0)  and s=(sx , sx , sz)  coordinates we

obtain e=(ex , e y ,e z) . For the cone axis vector we can freely choose either e  or −e . The sign is



selected  such,  that  the  cone  axis  vector  points  towards  the  base  detector  plane,  i.e.
sign(ez)=−sign(sz) .

From the components of this e  we obtain the polar angles:

θ=arccos(ez) , ϕ=arctan 2(e y , ex)

The half opening angle of the cone is obtained from the scalar products of the axis with any of the
generatrices:

γ = arccos( e(u– s )|e(u– s )|) = arccos( e (v – s)|e (v – s)|) = arccos( e (w – s)|e (w – s)|)
Use case 2 - Conic section from parameters
6 parameters of a cone, (s x , s y , sz ,θ ,ϕ ,γ )  are given. Determine the equation of the conic section
in the xy  plane!

The cone’s equation for a general p=( px , py , pz)  point can be derived from the condition that the
angle between the cone axis ( e  unit vector) and a generatrix ( p−s  vector) is the half opening
angle, γ  (Figure S3):

e (p−s)=|p−s|cosγ

Figure S3. Determination of conic section from parameters.

If we substitute the vectors with their parameters, square the equation and collect powers of the
elements of the general point p , we arrive at:



(cos2 (ϕ )sin2 (θ )−cos2
(γ ) )px2

+(sin 2
(ϕ )sin2 (θ )−cos2

(γ )) p y2

+(cos2 (θ )−cos2
(γ ) ) pz2

+(sin (2ϕ ) sin2 (θ )) px py
+(sin (2θ ) cos (ϕ )) px pz
+(sin (2θ ) sin (ϕ )) p y pz
+((2cos2

(γ )−2cos2
(ϕ )sin2 (θ )) sx+(−sin (2ϕ ) sin2 (θ ))s y+(−sin (2θ )cos (ϕ ))sz) px

+((−sin (2ϕ )sin 2 (θ ))sx+(2cos2
(γ )−2sin2

(ϕ )sin2 (θ )) s y+(−sin (2θ ) sin (ϕ ))s z) p y
+((−sin (2θ )cos (ϕ )) sx+(−sin (2θ )sin (ϕ )) sy+(2cos2

(γ )−2cos2
(θ ))s z) pz

+(cos2
(ϕ )sin2 (θ )−cos2

(γ ) )sx2+(sin (2ϕ ) sin2 (θ )) sx sy+(sin (2θ ) cos (ϕ ))s xsz
+(sin 2

(ϕ )sin2 (θ )−cos2
(γ )) s y2+(sin (2θ ) sin (ϕ )) s y sz+(cos2 (θ )−cos2

(γ ))sz2=0

This is the general equation of the cone in our specific parameter set. Now, in the current problem

we also know that  p=( px , py , pz)  is in the  xy  plane,  i.e.  we can substitute  pz=0 .  Then the

general cone equation simplifies to a quadratic form of px  and py  only, the equation of the desired
conic section:

A px
2+B px p y+C p y

2+D px+E p y+F=0

The coefficients can be matched from the general equation:

A=cos2 (ϕ )sin2 (θ )−cos2
(γ )

B=sin (2ϕ ) sin2 (θ )

C=sin2
(ϕ )sin2 (θ )−cos2

(γ )

D=(2 cos2
(γ )−2cos2

(ϕ )sin2 (θ )) sx+(−sin (2ϕ )sin2 (θ )) s y+(−sin (2θ ) cos (ϕ ) )sz
E=(−sin (2ϕ )sin 2 (θ ))sx+(2cos2

(γ )−2 sin2
(ϕ )sin2 (θ )) s y+(−sin (2θ ) sin (ϕ ))sz

F=(cos2 (ϕ )sin2 (θ )−cos2
(γ )) sx2+(sin (2ϕ )sin2 (θ ))sx s y+(sin (2θ ) cos (ϕ ) )sx sz

+(sin2
(ϕ )sin2

(θ )−cos2
(γ )) sy2 +(sin (2θ )sin (ϕ ))s y sz+(cos2

(θ )−cos2
(γ )) sz2

Use case 3 - Nearest point of a conic section
6 coefficients of a conic section equation, (A ,B ,C , D ,E ,F)  are given (see above) and there is a

point  in  the  xy  plane,  m=(mx ,m y ,0) .  Determine  the  nearest  point  of  the  conic  section

n=(nx , ny ,0) and calculate its distance!

We find the closest  point in 2 steps.  First  we determine points of the conic section,  where the
tangent line of the conic section is perpendicular to the line to the given point. As the conic sections
have no inflection points, these will have extreme distances, either local minimum or maximum. As
several such points may exist, we calculate their distances and select the closest one (Figure S4).



Figure S4. Determination of the nearest (and also the farthest) point of a conic section.

Since n=(nx , ny ,0)  is a point of the conic section, it satisfies the equation:

A nx
2+Bnxny+C ny

2+Dnx+Eny+F=0 .

If  d=(dx ,d y ,0)  is a tangent vector of the conic section at  n=(nx , ny ,0) , then  n+ε d , where
ε →0 , is also on the conic section and satisfies a similar equation. Subtracting the two equations,
then dividing by ε  and omitting the terms with ε 2  we formally differentiate the above equation
and obtain:

(2 A nx+Bny+D)d x+(2C ny+Bnx+E)d y=0

The condition that d  and n−m  should be perpendicular is expressed by their scalar product:

(nx−mx )d x+(n y−m y)d y=0

From the latter 2 equations we obtain:

(nx−mx )(2C ny+Bnx+E)=(ny−m y)(2 Anx+Bn y+D)

This equation expands to another quadratic form of the components of n⃗ (nx , ny ,0) :

(B)nx
2+(2C−2 A)nx ny+(−Bmx+2 A m y+E)nx+(−B)n y

2 +(−2Cmx+Bm y−D)ny+(Dm y−Em x)=0

Now we have to solve this and the first given conic section equation for  nx  and ny . Since both
equations are quadratic, that in general can have 4 intersections, we can expect a quartic equation
for the kept component. After eliminating either  nx  or  ny  we obtain a single equation for the
remaining variable, and vice versa:

a(x)nx
4+b(x)nx

3+c(x)nx
2+d (x)nx+e

(x)=0      and    a( y)ny
4 +b( y)ny

3+c( y)ny
2 +d ( y)ny+e

( y)=0

After lengthy, but simple calculations the 2×5 coefficients are as follows:



a(x )=4 A3C−A2B2−8 A2C2+6 A B2C+4 AC3−B4−B2C2

b(x )=(8A2C2−6 A B2C−8AC3+B4+2B2C2)mx
+(4 A2BC−A B3+4 A BC2−B3C)m y

+(8D A2C−2E A2B−D AB2+8E ABC−12D AC2−3E B3+5DB2C−2E BC2+4DC3)
c(x)=(4A C3−B2C2)m x

2

+(B3C−4 A BC2)mxm y

+(3E B3−5DB2C+4E BC2−8A E BC−8DC3+12 A DC2)mx
+(4 A2C2−A B2C)m y

2

+(4 E A2C−3 E A B2+4D A BC−2E B2C+4DBC2)m y

+(4 F A2C−3 AB DE−8F AC2+5A C D2+2 A C E2+4 F B2C−3B2E2+6 BC DE+4FC3−4C2D2−C2E2)
d(x)=(4C3D−2BC2E)mx

2

+(2B2C E−4 BC2D)mxm y

+(3B2E2−4FB2C−6BC DE−8FC3+4C2D 2+2C2E2+8 A FC2−2 A C E2)mx
+(4 AC2D−2 A BC E)my

2

+(F B3−B2DE+4F BC2+BC D2−BC E2−2 AB E2+4 AC D E)m y

+(F B2D+4 F BC E−BD2E−B E3−2 A F B E−4 FC2D+C D3+C D E2+4 A FC D)
e(x)=(4C3F−C2E2)mx

2

+(BC E2−4 BC2F )mxm y

+(4DFC2−DC E2−4BFC E+B E3)mx
+(F B2C−E BC D+C2D2)m y

2

+(F B2E−B D E2+C D2E)m y

+(B2F2−E B DF+C D2F )

and

a( y)=4A3C−A2B2−8A2C2+6 AB2C+4A C3−B4−B2C2

b( y)=(4 A2BC−A B3+4 ABC2−B3C )mx
+(2A2B2−8 A3C+8 A2C2−6A B2C+B4)m y

+(4E A3−2D A2B−12E A2C+5E A B2+8D ABC+8E AC2−3DB3−EB2C−2DBC2)
c(y )=(4 A2C2−A B2C )mx

2

+(A B3−4 A2BC)m xm y

+(4E A2B−2D A B2+4 E A BC+4D AC2−3D B2C)mx
+(4 A3C−A2B2)m y

2

+(4D A2B−8E A3+12CE A2−5E A B2−8C D A B+3DB3)m y

+(4F A3−8F A2C−A2D2−4 A2E2+4F A B2+6 A BD E+4F AC2+2AC D2+5AC E2−3B2D2−3BC DE)
d(y )=(4 A2C E−2 ABC D)mx

2

+(2A B2D−4 A2B E)mxm y

+(4F A2B−A BD 2+A B E2+4C A D E+F B3−B2D E−2C BD 2)mx
+(4 A3E−2A2B D)m y

2

+(2A2D2−8F A3+4 A2E2+8C F A2−4 F A B2−6 A B DE−2C A D2+3B2D2)m y

+(4F A BD−4F A2E+A D2E+A E3+4C F A E+F B2E−BD 3−BD E2−2C FB D)
e(y )=(A2E2+F A B2−D AB E)m x

2

+(A BD 2−4A2BF )mxm y

+(F B2D−B D2E+A DE2)mx
+(4 A3F−A2D2)m y

2

+(4E F A2−E A D2−4 B F A D+B D3)m y

+(B2F2−D BE F+A E2F )



Either  of  the  above  quartic  equations  can  be  solved  analytically  by  several  methods
[https://en.wikipedia.org/wiki/Quartic_function#Solution_methods,
http://mathworld.wolfram.com/QuarticEquation.html],  that  is  not  detailed  here.  Following  both

solution  paths  redundantly,  we  obtain  4  general  solutions  each,  nx
(1 ), nx

(2) ,nx
(3) , nx

(4 )  and

ny
(1 ), n y

(2) ,n y
(3) , ny

(4 ) . These are not necessarily solution coordinate pairs. For each of these, we obtain

the other coordinate from any of the original equations. Since these were quadratic, we obtain 2
solutions for each, labeled with a  and b , and such the 2×4×2 candidate solutions are as follows:

(nx
(1), n y

(1a)) ,(nx
(1) , ny

(1b)) , (nx
(2) , ny

(2a )) ,(nx
(2) , ny

(2b)), (nx
(3) , ny

(3a )) ,(nx
(3) , ny

(3b)) , (nx
(4) , ny

(4 a)) ,(nx
(4 ) ,n y

(4b ))
(nx

(1a ), n y
(1)) ,(nx

(1b) , ny
(1)) , (nx

(2a) , ny
(2)) ,(nx

(2b) , ny
(2)), (nx

(3a) , ny
(3 )) ,(nx

(3b) , ny
(3)) , (nx

(4a) , ny
(4 )) ,(nx

(4b ) ,n y
(4 ))

Some of these coordinates are not real, but complex, some of the solutions are false solutions due to
squaring equations, some of them are on the conic section but have maximal distance and they are
also doubled due to the redundant solution of the equations. Therefore the coordinate of the nearest
point and the minimal distance is simply selected from this set of potential solutions after numerical

evaluation of (nx−mx )
2+(ny−m y)

2 .

https://en.wikipedia.org/wiki/Quartic_function#Solution_methods
http://mathworld.wolfram.com/QuarticEquation.html
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