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CNRS UMR8502 / Université Paris-Saclay, Centre d’Orsay, F-91405 Orsay France,

and bCBI, ESPCI, CNRS, PSL University, 75005 Paris France.

E-mail: robert.botet@u-psud.fr

1. Reformulation of the Vrij solution for the structure factor of an
assembly of hard spheres

We consider a two-phase system made of non-deformable spheres (e.g. phase O) dis-

persed in a liquid (phase W). The overall volume fraction of phase O is φ. Each sphere

is supposed homogeneous and spherical, and its radius is noted a. The population of

polydisperse spherical particles has a normalized radius-distribution n(a) (normaliza-

tion condition:
∫∞
0 n(a)da = 1).

Let q be the magnitude of the scattering vector in a small-angle scattering exper-

iment. The normalized intraparticle interference factor of a homogeneous sphere of

radius a, is noted: Φ(qa), with the function Φ(x) = 3(sinx − x cosx)/x3. The scat-

tering amplitude contributed by the spherical particle of radius a is then: α3a
3Φ(qa),

in which α3 is a coefficient dependent on the refractive indices of the two phases. We

also introduce the function Ψ(x) = sinx/x.
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The static structure factor, S(q), of such a system is generally written as:

S(q) =
φ0

φ

Iφ(q)

Iφ0(q)
, (1)

in which Iφ(q) is the normalized intensity scattered by the system at the volume

fraction φ, and Iφ0(q) the scattering intensity of the same system when diluted to an

extremely small volume fraction φ0 ≃ 0. In (1), the coefficient φ/φ0 is the dilution

factor.

In the following steps, we use notations close to (Vrij, 1979), except for the definition

of the averaged values of quantities related to the particle radii. Below, the averaged

value of a quantity F (a) depending on the radius a, is the standard one, namely:

⟨
F (a)

⟩
≡
∫ ∞

0
F (a)n(a)da . (2)

The analytical results obtained by Vrij for a polydisperse population of spheres are:

Rφ(q) =
−Df (q)

∆(q)
, (3)

−(1− φ)4

φ
Df (q) =A0

(⟨
a6Φ2

⟩
|T1 + T2|2 +

⟨
a4Ψ2

⟩
|T3|2+

+
⟨
a5ΦΨ

⟩
((T1 + T2)T

⋆
3 + (T ⋆

1 + T ⋆
2 )T3)

)
, (4)

(1− φ)4∆(q) =|T1|2 , (5)

in which A0 is a normalization coefficient independent of q and of φ but dependent

on the electromagnetic properties of the emulsion and of the radius distribution. To

be precise, A0 = 16α2
3/(4π

⟨
a3
⟩
/3). The auxiliary functions T1, T2, T3 are given by the
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following expressions (Vrij, 1979):

F11 =1− φ

1−
⟨
a3Φeiqa

⟩
⟨
a3
⟩

 , (6)

F22 =1− φ

1− 3

⟨
a3Ψeiqa

⟩
⟨
a3
⟩

 , (7)

F12 =φ

⟨
a4Φeiqa

⟩
⟨
a3
⟩ , (8)

F21 =(1− φ)iq − 3φ

⟨
a2
⟩
−
⟨
a2Ψeiqa

⟩
⟨
a3
⟩ , (9)

T1 =F11F22 − F12F21 , (10)

T2 =φ

F21

⟨
a4Φeiqa

⟩
⟨
a3
⟩ − F22

⟨
a3Φeiqa

⟩
⟨
a3
⟩

 , (11)

T3 =3φ

F12

⟨
a3Φeiqa

⟩
⟨
a3
⟩ − F11

⟨
a4Φeiqa

⟩
⟨
a3
⟩

 . (12)

These expressions lead to the structure factor function under the form:

S(q) =
(1− φ)2

|T1|2

|F22|2 + 9

⟨
a4Ψ2

⟩
⟨
a6Φ2

⟩ |F12|2− (13)

− 3

⟨
a5ΦΨ

⟩
⟨
a6Φ2

⟩ (F22F
⋆
12 + F ⋆

22F12)

 , (14)

where we used the relations derived from (6), (8), (10), (11):

T1 + T2 = (1− φ)F22 , (15)

T3 =− 3(1− φ)F12 . (16)

To continue the calculation, it is now convenient to introduce the following functions:

f11 =1 + ψ
s0 + s1
ν3

, (17)

f22 =1 + ψ
s2
ν3

, (18)

f12 =ψ
s1
ν3

, (19)
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where:

ψ =
3φ

1− φ
, (20)

ν3 =
⟨
(qa)3

⟩
, (21)

Ξ(x) = sinx− x cosx , (22)

s0 =
⟨
Ξ(qa) eiqa

⟩
, (23)

s1 =− i
⟨
qaΞ(qa) eiqa

⟩
, (24)

s2 =
⟨
(qa)2 sin(qa) eiqa

⟩
. (25)

That way, one obtains the identity:

|T1|2 = (1− φ)4
∣∣∣f11f22 + f212

∣∣∣2 , (26)

hence the expression of the structure factor:

S(q) =

⟨
Ξ2
⟩
|f22|2 + Im{s2}|f12|2 − iRe{s1}(f⋆22f12 − f22f

⋆
12)⟨

Ξ2
⟩ ∣∣f11f22 + f212

∣∣2 . (27)

At last, one uses the following identities:

ψ
⟨
Ξ2
⟩
=Im{f11} , (28)

ψIm{s2} =Im{f22} , (29)

ψRe{s1} =Re{f12} , (30)

to put the expression of the structure factor under the compact form:

S(q) =
Im{f⋆22(f11f22 + f 2

12)}
Im{f11}|f11f22 + f 2

12| 2
, (31)

in which the three auxiliary complex-valued functions f11, f22, f12 are defined by:

f11 =1 + ψ
µ1
ν3

, (32)

f22 =1 + ψ
µ2
ν3

, (33)

f12 =ψ
µ3
ν3

, (34)
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with the parameter ψ given in (20). Generally, the parameters µ1, µ2, µ3, ν3 do not

depend on the volume fraction φ of the scattering matter. They are given explicitly

by the following formulae:

µ1 =
⟨
(1− iqa) (sin(qa)− qa cos(qa)) eiqa

⟩
, (35)

µ2 =
⟨
(qa)2 sin(qa) eiqa

⟩
, (36)

µ3 = − i
⟨
qa (sin(qa)− qa cos(qa)) eiqa

⟩
, (37)

ν3 =
⟨
(qa)3

⟩
. (38)

An equivalent form of the set of formulae (31)-(38), using only real-valued functions,

is given in the Section 2. It results simply from rewriting (31) with f11 = Re{f11} +

i Im{f11} and similar expressions for f22 and f12.

The auxiliary parameter µ1 has another role in the context of scattering intensity.

Indeed, using the same quantities, the diluted scattering intensity of the polydisperse

system, is:

I0 ∝

⟨
(sin(qa)− qa cos(qa))2

⟩
q6

, (39)

in which the proportionality constant is independent of q for a constant wavelength.

Using (28), I0 can be written under the form:

I0 ∝
Re{µ1}
q6

. (40)

comparison with published results

• In (van Beurten & Vrij, 1981), the authors showed structure factor functions

calculated from an assembly of hard spheres with a Schulz distribution of the

particle diameters and various values of standard deviation. The original solution

proposed by Vrij (Vrij, 1979) is used. Their FIG. 4, for example, corresponds

to data for the volume fraction φ = 0.1 with diameter standard deviations
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= 0 (monodisperse case), 0.1, 0.3 and 1.0. The Schulz distribution with mode⟨
2a
⟩
= 1 is used, that is:

nSchulz(a) ∝
(
ae−2a

)b−1
, (41)

with the following relation between the positive exponent b and the standard

deviation, σa, of the radius distribution:

σa =

√
b

2(b− 1)
. (42)

The monodisperse case corresponds to b→ ∞.

The results obtained from the results given in the Section 4.1 for the Schulz

distribution with φ = 0.1 and the three values of the standard deviations used

in (van Beurten & Vrij, 1981) are shown in our FIG. 1. The results are similar

to previously published data.

• In (Scheffold & Mason, 2009), the authors compared their experimental data to

the analytical solution presented in (Ginoza & Yasutomi, 1999) for the structure

factor of a polydisperse system with a Schulz diameter distribution. Using the

same set of parameters, one finds our FIG. 2 which can be compared to their

Figure 1.

2. formulae for some radius-distributions using the complex-valued
auxiliary quantities (35)-(37)

2.1. the Schulz distribution

The case of Schulz distribution:

nSchulz(a) ∝ as−1e−s a/⟨a⟩ , (43)

is discussed in details in the Section 4.1. We give here the complete solution for

SSchulz(q) in terms of the complex-valued auxiliary functions µ1, µ2, µ3, in order to

obtain a solution in a more compact form.
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Let us introduce the auxiliary function µ0:

µ0 =
ei(s+2) tan−1 2x

(1 + 4x2)s/2+1
, (44)

and the scaled variable x = q
⟨
a
⟩
/s.

The auxiliary parameters µ1, µ2, µ3 are such that:

µ1 =
i

2

[
1 + s(s+ 1)x2 −

−µ0
(
1− 2(s+ 2)ix− (s+ 1)(s+ 4)x2

) ]
, (45)

µ2 =
ix2

2
s(s+ 1) (1− µ0) , (46)

µ3 =
sx

2

(
1 + i(s+ 1)x− µ0(1− i(s+ 3)x)

)
, (47)

and

ν3 = s(s+ 1)(s+ 2)x3 . (48)

One can notice that when the value of the parameter s is an integer number, the

expression of µ0 is quite simple:

µ0 =
1

(1− 2ix)s+2
. (49)

Consequently, SSchulz(q) can in this case be expressed as the ratio of two polynomials

in x. For example:

s = 1 ⇒ µ0 =
1− 12x2 + 2ix(3− 4x2)

(1 + 4x2)3
, (50)

s = 2 ⇒ µ0 =
1− 24x2 + 14x4 + 8ix(1− 4x2)

(1 + 4x2)4
, (51)

etc.

and the static structure factor, SSchulz(q), is obtained readily from expression (31).
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2.2. the power-law distribution

The power-law radius distribution is defined as:

npower-law(a) ∝
1

adf+1
for amin < a < amax . (52)

The exponent df is here restricted to the values 2 < df < 3. The auxiliary positive

parameter: ρ ≡ amin/amax is used henceforth, introduced by the relation:

1− φ ≃ κ ρ3−df , (53)

as conjectured in (Varrato & Foffi, 2011), and κ is a number with value of order 1. At

last, we define the parameter w as:

w =
1− φ

κ− (1− φ)
. (54)

The values of the first moments of the radius are calculated:

⟨
a
⟩
=

df
df − 1

amin

(
1− ρdf−1

1− ρdf

)
, (55)

⟨
a2
⟩
=

df
df − 2

a2min

(
1− ρdf−2

1− ρdf

)
, (56)

⟨
a3
⟩
=

df
3− df

a3min

1

ρ3−df

(
1− ρ3−df

1− ρdf

)
. (57)

Note the term ρdf−3 in expression (57), which may be quite large in the case of wide

power-law distributions (that is when ρ≪ 1).

Defining the reduced variable:

x ≡ qamin , (58)

the expressions for µ1, µ2, µ3 can be expressed after introducing the auxiliary function

µ0 written in terms of the incomplete Gamma function, Γ(., .), namely:

µ0(x) =
sinx

x
eix + (−2ix)df−3Γ(3− df ,−2ix) , (59)

IUCr macros version 2.1.11: 2020/04/29



9

µk
ν3

= w
3− df
df − 2

[
φk(x)− ρdf−3φk(x/ρ)

]
; k = 1, 2, 3 , (60)

φ1(x) = i
df − 2

2 df

(
1 + 2x2 − e2ix(1− 2ix)

x3

)
+

+
4− df
df

µ0(x) , (61)

φ2(x) = µ0(x) , (62)

φ3(x) = i
df − 2

2(df − 1)

(
2x− i(1− e2ix)

x2

)
+

3− df
df − 1

µ0(x) . (63)

It is interesting to note that when ρ ≪ 1, all the quantities ρdf−3φk(x/ρ) appearing

in the above formulae are negligible, since φ(x) ∼ 1/x in x → 0, for all the three

indices k = 1, 2, 3, and df > 2. In addition, all the quantities in parenthesis in the

moments (55)-(57) are ≃ 1. Taking into account these approximations, and taking the

real values of all quantities, we can then recover the formulae (74)-(83).
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Fig. 1. Structure factor S(q) at volume fraction φ = 0.1 for several standard deviations

σ of hard-sphere diameters. The notation d0 = 2
⟨
a
⟩
is used. These data are to be

compared with FIG. 4 of reference (van Beurten & Vrij, 1981).
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Fig. 2. Scaled static structure factor function S(q) at volume fractions and parameters:
(φ = 0.7 ; s = 23.34), (φ = 0.72 ; s = 24.27), (φ = 0.77 ; s = 22.68), respectively
(from top to bottom). These data have to be compared with Figures 1.a), b), c) of
reference (Scheffold & Mason, 2009).
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