
Supplementary information for the article:

PyNX: high performance computing toolkit for coherent X-ray imaging based on operators

Vincent Favre-Nicolin, Gaétan Girard, Steven Leake, Jérôme Carnis, Yuriy Chushkin, Jérôme Kieffer,
Pierre Paléo and Marie-Ingrid Richard

1 OpenCL vs CUDA FFT performance
Both OpenCL and CUDA languages rely on the same hardware. Generally speaking, the performance

is almost identical for floating point operations, as can be seen when evaluating the scattering calculations
(Mandula et al, 2011). However the FFT performance depends on low-level tuning of the underlying libraries,
namely the cuFFT and clFFT libraries, which are respectfully optimised for Nvidia and AMD devices.

The performance of both libraries has been evaluated for an Nvidia V100 GPU, for 2D and 3D FFT of
all sizes for which the largest prime factor decomposition is at most 7 (note that clFFT allows up to 13, and
cuFFT allows values larger than 7 but with a degraded performance). The configuration used for the
comparison was: Nvidia driver 435.21, CUDA version 10.1, clFFT v2.12.2, pyopencl 2019.1.2, pycuda
2019.1.2, gpyfft git commit 2c07fa8e7674757.

As performance on a GPU is limited by the memory throughput rather than the floating-point
operations, we report here the average processing speed in GB/s, taking into account the N read and write
operations for the N-dimensional FFT. Each test is done by performing two pairs of backward and forward
FT in single precision (32-bit floating point), and the test is repeated four times, the best time being kept for
reporting. In the case of clFFT, each possible order for the axes transforms (a N-dimensional FT is a succession
of N 1-dimensional FT) for the FT is tested and the best time is used.

Figure 1: 3D FFT performance, measured on a Nvidia V100 GPU, using CUDA and OpenCL, as a function of the

FFT size. The obtained speed can be compared to the theoretical memory bandwidth of 900 GB/s. Larger dots

are shown for power-of-twos transforms

Note that these tests do not imply that cuFFT is superior to clFFT in general, but rather that it is at
least the case on Nvidia hardware. This is expected as clFFT is optimised for AMD GPU. One notable
difference is the warp-size which is 32 for Nvidia GPU, whereas for AMD the wavefront is 64 – both numbers

correspond to the number of low-level compute threads which are executed in parallel on a compute unit –
a difference which can explain that clFFT tuning is not optimal on Nvidia hardware.

Also note that ‘in-place’ cuFFT transforms require 2x the amount of memory for the transform, in
order to optimise memory transfers (it is faster to copy values from adjacent memory, so the transforms
along the different axis of the FFT are better optimised by re-arranging the memory). clFFT does not require
this (which may be a reason for a lower performance), and can thus handle larger transforms, which can be
useful for large 3D CDI FFT.

All the tests can be reproduced using the function:
 pynx.test.speed.plot_fft_speed()

Figure 2: 2D FFT performance, measured on a Nvidia V100 GPU, using CUDA and OpenCL, as a function of the

FFT size up to N=2000. The obtained speed can be compared to the theoretical memory bandwidth of 900

GB/s. Larger dots are shown for power-of-twos transforms

2 Larger version of Figure 5a and b

Figure 3: larger version of article Figure 5b. Display of the CXI file, using the silx toolkit viewer, obtained as a

result from a CDI analysis. As the CXI file is NeXus-formatted, the view automatically opens the relevant

object. The HSV colour map gives information both about the amplitude and the phase of the object. This

example is the result of Bragg CDI on a Pt nano-crystal with a dislocation. As can be seen in the left of the

image, different fields in the CXI/hdf5 file include information about the object as well as the process and

parameters used for the analysis.

Figure 4: larger version of Fig.5a - example output plot of a ptychography experiment, showing both the

object and the probe in RGBA, as well as all parameters used for the analysis

3 Larger view of the MPI-ptychography reconstruction of the modulator

Figure 5: overview of the reconstructed modulator, shown in the article Figure 3. Left: Division of the scanning

positions into 12 domains with ~575 points each, including ~30 shared with the neighbours. Right: complete

view of the reconstructed object phase

Figure 6: complete heat map of the optimised position shifts (see article fig 3c for explanations), which shows

that the overall trend is a drift vs time for the 16 successive scans which compose the entire dataset. In this

representation, the maximum displacement is 313nm, and the reference region at the top left.

