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1. Implementation of multivariate normal distributions and Gaussian mixture models and basic 
performance testing 

1.1. Gaussian approximations of PDFs 

When using a Monte Carlo Markov Chain (MCMC) based global optimizer, the result of a model fit is a 

sample of an unnormalized joint posterior probability density function (PDF) ( | ) =  ( , | ) of 

model parameters  given the data . In principle, the joint posterior PDF contains all information 

required to calculate full and marginal posterior entropies that are needed to determine the full and 

marginal information gain. However, due to the high dimensionality of the NR models, the sampling 

density is often insufficient to obtain those quantities from the sample of the posterior PDF, directly. 

Fortunately, assumptions about the shape of the posterior PDF can alleviate some of these problems. We 

found that distributions of parameter fit values in this work are sufficiently well described by Gaussian 

distributions, or linear combinations of thereof. We therefore use multivariate normal (MVN) and 

Gaussian mixture model (GMM) approximations in conjunction with the discrete MCMC sample of the 

posterior PDF to obtain posterior entropies. 

A MVN approximation of the posterior PDF that uses a single multivariate Gaussian distribution takes the 

form: 

( | ) = 1(2 ) ⁄ |Σ| ⁄ ( ) ( ) = ( , , Σ) 

 is the mean of the sample of -dimensional parameter vectors . |Σ| denotes the determinant of the 

variance-covariance matrix Σ of . Both values can be defined in terms of an expectation value . μ = θ          Σ = ( − )( − ) = , , 0 < , <  

The GMM approximation of the posterior PDF is a linear combination of  MVN distributions with 

weights : 

( | ) = 1(2 ) ⁄ |Σ | ⁄ ( ) ( ) = ( , , Σ ) 

= 1 
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We typically use = 5√  weights, and a sub-sample size of  =  10,000 to compute a GMM 

approximation from a discrete sample of a PDF. 

1.2. Entropy of the joint posterior PDF 

The entropy of a continuous PDF ( | ) is given by: 

(Θ| ) = −  ( | ) log  ( | )  

In the case of the MCMC, an unnormalized, discrete sample of the PDF is obtained that requires a 

normalization factor of  to obtain absolute values of ( | ). An estimate of the entropy of such a PDF 

can be obtained via a MVN approximation by evaluating the determinant of the -dimensional covariance 

matrix |Σ| (Chen, Wang, Zhao, & Principe, 2016). Using this method, the normalization factor  does not 

need to be explicitly determined, as the MVN distribution is analytically normalized:  

(Θ| ) = 2 log 2 + 12 log|Σ| 
In general, the entropy of a GMM distribution cannot be analytically obtained. A numerical 

approximation such as a Monte Carlo integration over a random sample of size  is required, instead: 

(Θ| ) ≈ 1 log ( | ) 

In previous work we used an entropy estimate proposed by Kramer et al. (KDN estimate) that retains the 

utilization of the unnormalized density values (log-likelihood values of the model fit) of every point in the 

MCMC sample for the entropy calculation (Kramer, Hasenauer, Allgöwer, & Radde, 2010). KDN uses a 

kernel density estimate (KDE) to globally obtain the normalization factor . Entropy calculation is then 

realized as a Monte Carlo integration over  points from the MCMC posterior PDF, as the frequency of 

occurrence of a parameter vector  in the MCMC sample is proportional to its probability density ( | ):  

(Θ| ) = − 1 log  ( | ) = − log  ( | )  

We found a good agreement between MVN and KDN with expected differences for non-normal PDFs but 

also observed that the KDE computation is less robust with respect to different samples from the posterior 

MCMC PDF. Occasional outliers were observed and eliminated during repeated entropy calculations.  

1.3. Marginal entropies from the posterior PDF 



 

 

J. Appl. Cryst. (2020). 53,  doi:10.1107/S1600576720005634        Supporting information, sup-3 

The marginal entropy (Θ| ) = (Λ| ) of a PDF with respect to the parameters of interest  of the 

parameter vector = ( , ) is defined as:  

(Θ| ) = (Λ| )  = − ( | ) log ( | )  

The marginal PDF ( | ) is generally computed by integrating the joint PDF ( , | ) = ( | ) over 

the nuisance parameters : 

( | )  = ( , | )  

This integral is easily obtained for the MVN estimate of the joint PDF.  and Σ of the joint PDF are 

decomposed into contributions from the parameters of interest  and nuisance parameters : = ( , ) 

Σ = Σ ΣΣ Σ  

Then, the marginal PDF becomes: 

( | ) = ( , | ) =  ( , , Σ ) 

The marginal entropy follows as: 

(Θ| ) = 2 log 2 + 12 log |Σ | 
 constitutes the length of the sub-vector of parameters of interest. The marginal MVN entropy is 

computed from the MVN estimate of the joint PDF by dropping the rows and columns from Σ that are 

associated with nuisance parameters.  

This approach is trivially extended to the PDF in the GMM approximation ( | ) by dropping the 

rows and columns from the joint PDF ( | ) associated with nuisance parameters for all mean 

vectors and covariance matrices:  

( | ) = , , Σ  

(Θ| ) of is then calculated identically to the joint posterior PDF using a Monte Carlo sum over ( | ). 
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If one wishes to make direct use of the probability densities obtained by the MCMC optimizer, a sampling 

scheme similar to the KDN estimate can be obtained starting with the conditional entropy: (Θ| ) = (Λ, Φ| ) − (Φ|Λ, ) = (Θ| ) −  (Φ|Λ, ) 

with 

(Φ|Λ, ) = − ( | , ) log ( | , )  ( | )  

= − ( , | )( | ) log ( | , )  ( | )   
= − ( , | ) log ( , | ) − log ( | )   
= − ( | ) log ( | ) − log ( | )   
=  (Θ| ) + ( | ) log ( | )   

Thereby, one obtains 

(Θ| ) = − ( | ) log ( | )   

This means that (Θ| ) can be computed using Monte Carlo sampling of log ( | ) over the sample of 

the posterior PDF obtained by the MCMC optimizer. The marginal PDF ( | ) at the sampling points 

has to be computed from the MVN or the GMM estimates as shown above, or alternatively, ( | ) can 

be obtained as the ratio of ( | ) and  ( | , ) using the formula for conditional probability:  

( | ) = ( | )( | , ) 

Following our previous work (Treece et al., 2019), we initially used a KDN estimate for ( | ) and 

computed a KDE estimate of the conditional PDF ( | , ) using the statsmodels Python package 

(Seabold & Perktold, 2010). We found that most NR models in this study were too complex (high-

dimensional) to support robust computations of KDE estimates, while GMM estimates provided reliable 

and for practical purposes identical estimates. We therefore used a GMM estimate of log ( | ) in the 

Monte Carlo integration to calculate (Θ| ). 

1.4. Comparison of different methods to calculate the marginal entropy 
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Fig. S1 shows marginal entropies calculated using the MVN and GMM methods for the model parameters 

describing the thickness, volume fraction, and nSLD of the porous layer in the test structure discussed in 

section 3.1 and shown in Fig. 1. The information gain from a single virtual NR measurement was 

determined under systematic variation of the values of  of the porous layer and the bulk solvent. Both 

methods yield quantitatively similar results, showing lowest information gain when the solvent nSLD 

matches that of the porous layer and was close to that of the Si substrate ( = 2  10-6 Å-2). There from 

we concluded to report only GMM estimates throughout the paper. 

 

Figure S1 Information gain ∆  from a single NR measurement on the model structure in Figure 1 as a 

function of the nSLDs of the porous layer material and the aqueous solvent. nSLDs were varied in steps 

of 0.510-6 Å-2. Entropies of the posterior were calculated using the marginal MVN (panel A) and 

marginal GMM (panel B) approximations.  

1.5. Degenerate model parameters 

To test the robustness of the implementation of the marginal entropy against degenerate parameters, we 

introduced a pair of highly correlated parameters by splitting the porous layer of the model structure 

shown in Fig. 1 into two sublayers, each having a thickness of one half of that of the original layer, which 

is 15 Å. The volume fraction and nSLD values of the two sublayers are shared and their nominal values 

are identical to those of the original single layer. Fit boundaries for the layer thicknesses of both sublayers 

are 15.0 Å ± 2.2 Å, ensuring that the prior entropy of the two layers is identical to the one of the single 

layer of the non-degenerate model with fit boundaries of 30 Å ± 10 Å. Per design, the thicknesses 

parameters of the porous layers in the degenerate model cannot be individually resolved, but are highly 
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correlated while the total thickness of both layers and the uncertainty is the same as those obtained for the 

single porous layer in the non-degenerate model (see Figure S2). 

 

Figure S2 Fit results of a single NR measurement using one bulk solvent contrast of the original test 

structure (Fig. 1) and a degenerate model. (A) Thicknesses of the two layers with otherwise identical 

values for nSLD and volume fraction. (B) PDFs of the thickness of the single layer and the sum of the 

thicknesses of the two sublayers shown in panel A. 

To illustrate the contribution of the layer thickness parameters to the information gain (one parameter for 

the original model, two parameters for the degenerate model),  values were calculated for different 

combinations of parameters that describe the porous layer: (1) layer thickness(es), volume fraction and 

nSLD; (2) layer thickness(es) only; and (3) the volume fraction and nSLD only (see Fig. S3). As 

expected, the information gain from the non-degenerate and degenerate models trace each other very 

closely. A difference in  of 2 bit is observed for combinations that include layer thickness parameters. 

The origin of this difference is related to inherent difficulties in computing the entropy of highly 

correlated parameters with broad individual PDFs. 

 



 

 

J. Appl. Cryst. (2020). 53,  doi:10.1107/S1600576720005634        Supporting information, sup-7 

 

Figure S3 Marginal information gain  from a virtual experiment using one bulk solvent contrast for 

the non-degenerate system (A) and the degenerate system (B). The columns refer to different 

combinations of parameters describing the porous layer for which  was calculated.  
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2. Supplemental for optimizations 

 

Figure S4 Marginal information gain on the thickness, volume fraction, and nSLD of a porous layer 

(Fig. 1) with an nSLD close to that of a lipid bilayer (  = -0.5  10-6 Å-2) from an NR experiment 

consisting of three virtual measurements with systematically varied, independent bulk solvent nSLDs. 

The nSLD of one bulk solvent is given in the panels.  
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Figure S5 Marginal information gain on the thickness, membrane volume fraction, and fraction of 

DPPC-d62 of the solid supported lipid bilayer shown in Fig. 3 for a particular nSLD value of the lipid 

hydrocarbon chains of ρn = -0.5  10-6 Å-2. Three bulk solvent nSLDs in a virtual NR experiment were 

systematically varied. 
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