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1. Derivation of geometrical aberrations associated with center of mass shifts

The major geometrical aberrations resulting from tilt misalignment of the samples are all related 
to changes in the sample center of mass.  A rough schematic of the experiment geometry is shown 
below in Figure S1.  During the experiment, the sample is translated up and down with respect to 
the static X-ray beam (black arrow).  However, this behavior is mathematically equivalent to the 
beam moving up and down with respect to the sample, and the discussion will be framed in this 
alternate frame of reference.  The heights reported in the main text of the manuscript are the “height 
normal to the beam” with respect to the sample center (black dot), and therefore reflect the 
coordinates with respect to the experiment (vertical axis of Figure S1) rather than the height normal 
to the circular faces of the samples.  It should be noted that the while the aspect ratio of the 
rectangle in Figure S1 is about 3:1, that the aspect ratio of typical samples is usually closer to 20:1. 

The cross-section of the sample illuminated by the beam during experiments is very nearly 
rectangular, despite the cylindrical nature of typical experiments done in a radial geometry (radial 
illumination of sample), and it will be assumed to be an ideal rectangle for derivations.  When the 
sample is perfectly aligned, the path that the beam traverses through the sample will always be 
equal to the distance between the front and back of the sample as the height of the beam changes 
with respect to the sample center, and this length will be equal to the sample diameter if the beam 
is centered with respect to the horizontal profile of the sample.  If the sample is slightly tilted, there 
will be regions (in gray) where the beam no longer enters and exits through the left and right sides 
of the rectangular cross-section of the sample, but instead passes through one side and one face 
(top or bottom) of the sample.  For a tilted sample, the horizontal center of mass with respect to a 
given vertical position of the beam is the average of the entry and exit point coordinates.  The 
center of mass for tilted samples is most easily calculated with respect to the corners, and it either 
consists of the corner point (A & D in Figure S1), or the midpoint (B & C) of the line between the 
corner and the opposite edge. 

Figure S1. Schematic of experimental geometry for a typical depth profiling experiment in which 
the position of the incident beam (black arrow) is varied in the vertical direction with respect to 
the sample.  The sample center of mass at different beam heights is indicated by a red dashed line.
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For center of mass calculations, we choose to use the sample frame of reference rather than the 
beam frame of reference used in the main text.  The coordinate system is shown below in Figure 
S2, where the horizontal axis is parallel to the long axis of the rectangular sample along which the 
length of the sample is measured, and the orthogonal vertical axis is parallel to the short axis of 
the sample along which the thickness of the sample is measured.  The interior black lines indicate 
the path of X-rays passing through a sample corner and are necessarily parallel to each other since 
the synchrotron beam divergence is negligible with respect to the sample dimensions.  The angle 
between these lines and the long edges of the sample is denoted θ and is equal to the tilt of the 
sample relative to the beam, thus specifying the sample misalignment.  If the coordinates of the 
four points A, B, C, and D are calculated, the center of mass offset (in the sample coordinates) for 
any other incident beam vertical position can be calculated from the equation of the line segment 
connecting two of these points.  It should be noted that the geometry of Figure S2 represents only 
one of the seven unique geometries that result from tilts of less than 90°, all of which are shown 
in Figure S3. 

 

 

Figure S2. Sample frame of reference for calculating the center of mass for any beam path.  The 
dashed red line denotes the center of mass positions for all possible incidence points of X-ray 
beams that are tilted with respect to the sample by an angle θ (as drawn here, the value of θ is 
positive) The path of the X-ray beam when it intersects corners of the sample while passing through 
the samples are drawn as the two black lines containing the points B or C. The points A, B, C and 
D are the end points of the three line segments which are used to calculate the center of mass for 
any specific incidence point of the X-ray beam.   
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Figure S3. Seven possible geometries of intersection of X-ray beam with sample for tilts < 90° 
(labeled a – f in order of decreasing tilt angle, from most positive to most negative). 

The coordinates (in the sample frame of reference) of the key points (A-D) needed for sample 
center of mass calculations are provided in Table S1.  All equations for the line segments between 
pairs of consecutive points (again, in the sample frame of reference) are provided in Table S2, 
together with the boundary conditions which specify the limits of the line segments.  The derivation 
of these equations is discussed further in the next section. The final step in calculations is to take 
the results obtained in this manner and transform them back in to the beam frame of reference, 
which involves rotation by an angle θ.  A generic line specified by the equation mx + b in the 
sample frame of reference will transform into an alternate line with the equation m´x + b´ in the 
beam frame of reference that is obtained using the standard transformations below: 

 

𝑚𝑚′ =  𝑚𝑚cos𝜃𝜃−sin𝜃𝜃
𝑚𝑚 sin𝜃𝜃+cos𝜃𝜃

 and 𝑏𝑏′ =  𝑏𝑏
𝑚𝑚sin𝜃𝜃+cos𝜃𝜃
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Table S1. Horizontal and vertical coordinates for points A-D in the sample frame of reference 
for the seven different experiment geometries shown in Figure S3. 

 

 

Table S2. Equations and boundary conditions for line segments describing the center of mass 
positions in the seven different experiment geometries shown in Figure S3. 

 

 

2. Derivation of equations for lines used in center of mass calculations 

As shown in Figure S2, the cross-section of the sample probed by the X-ray beam during 
experiments is reasonably approximated by a rectangle with a length L and width T. Additionally, 
the angle θ is defined as the angle between the incident beam and the bottom of the sample using 
the coordinate system described in Figure S2, where a positive value of θ indicates that a clockwise 
rotation of the sample (when viewed from the perspective of Figure S2) is required to co-align the 
sample with the beam.   
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To determine the center of mass of the sample in the horizontal direction when the beam does not 
pass through the sample center (a key step in determining the effective horizontal distance offset 
relative to the distance to the sample center), the first step is to determine which of the three regions 
of the sample the beam is probing. As shown in Figure S2, one of these regimes is typically an 
interior region of the sample where the distance displacement is minimal and the horizontal center 
of mass falls on the line BC.  The other two regions are typically exterior regions where the 
displacements can be comparable in magnitude to the half-width of the sample, where the sample 
center of mass falls on lines AB or on CD.  For special cases where the beam is exactly parallel to 
the sample edge (case d in Figure S3) or where the tilt angle is such that the beam can pass through 
two corners as it transits the sample (cases b and f in Figure S3), there are fewer than 3 
mathematically distinct regions, as can be seen in Tables S1 and S2. 

In all cases, the horizontal center of mass for the beam passing through the sample for a given 
vertical displacement relative to the sample center within the sample frame of reference is found 
by determining the intersection point of the beam with the lines (AB, BC, and CD) that describe 
the possible center of mass positions for the beam intersecting the tilted sample.  The coordinates 
(l, t) of the four points that determine this line (A, B, C and D) along the orthogonal axis in the 
direction of the sample length and thickness are given as a function of the tilt angle (θ), the total 
sample length (L), and the total sample height (T) in Table S1, and can be derived through simple 
geometric relationships.  Furthermore, the equations for the line and the boundary conditions that 
produce the line segments AB, BC, and CD are given in Table S2.   

3. Derivation of common crossing points for distance displacements at different tilt angles 

In Figure 5 of the main text, it was shown that the unknown length and thickness of a sample cross-
section can be determined from plots of the crossing points of the plots of the displacement distance 
vs. relative beam height for different sample tilt angles. These special crossing points occur at 
coordinates corresponding to 1/2 of the sample length and 1/4 of the sample thickness when the 
tilt angle is small.   

This relationship between the coordinates of these special crossing points and the sample 
dimensions can be mathematically proved by carrying out the calculation for the sample horizontal 
center of mass at two different tilt angles, θ and ϕ, and solving these equations to determine when 
common coordinates (l,t) are produced on a given line segment (such as AB) as shown below: 

(1)                                                   𝑙𝑙 = cot𝜃𝜃𝜃𝜃 + 𝐿𝐿
2
− 𝑇𝑇

2
cot 𝜃𝜃 

(2)                                                   𝑙𝑙 = cot φt + 𝐿𝐿
2
− 𝑇𝑇

2
cotφ     

(3)           𝑙𝑙 = cot 2𝜃𝜃𝜃𝜃 + 𝐿𝐿 sin𝜃𝜃−𝑇𝑇 cos𝜃𝜃
2 sin2𝜃𝜃

     

(4)            𝑙𝑙 = cot 2φ𝑡𝑡 + 𝐿𝐿 sin𝜑𝜑−𝑇𝑇 cos𝜑𝜑
2 sin2𝜑𝜑

     

Equations (1) and (2) give coordinates on the line segment AB at different tilt angles of θ and ϕ, 
respectively, with regard to the sample coordinate system.  However, these equations can’t be 
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directly used for comparisons of experimental data collected at different tilt angles since the 
coordinates l and t since the sample axes have a different orientation for different tilt angles. To 
remedy this, the equations can both be transformed to the beam frame of reference as described 
earlier in Section 1 of the Supporting information, resulting in equations (3) and (4). 

Once this is done, the equations for l can be used to derive the following equality: 

(5)     cot 2𝜃𝜃𝜃𝜃 + 𝐿𝐿 sin𝜃𝜃−𝑇𝑇 cos𝜃𝜃
2 sin2𝜃𝜃

=  cot 2𝜑𝜑𝜑𝜑 + 𝐿𝐿 sin𝜑𝜑−𝑇𝑇 cos𝜑𝜑
2 sin2𝜑𝜑

   

The crossing point coordinate t can be found by rearranging Equation (5) to solve for t: 

(6)            𝑡𝑡 =  𝐿𝐿 (sin𝜃𝜃 sin2𝜑𝜑−sin𝜑𝜑 sin2𝜃𝜃)+ 𝑇𝑇(cos𝜑𝜑 sin2𝜃𝜃−cos𝜃𝜃 sin2𝜑𝜑)
2(cos2𝜃𝜃 sin2𝜑𝜑−cos2𝜑𝜑 sin2𝜃𝜃)    

Since θ and φ are both small angles (< 5°), cos𝜑𝜑 ≅ cos 𝜃𝜃 ≅ cos 2𝜃𝜃 ≅1  and Equation (6) can 
thus be simplified as: 

(7)    𝑡𝑡 =  𝐿𝐿 (sin𝜃𝜃 sin2𝜑𝜑−sin𝜑𝜑 sin2𝜃𝜃)
2(sin2𝜑𝜑−sin2𝜃𝜃) − 𝑇𝑇

2
    

Since 𝐿𝐿 (sin𝜃𝜃 sin2𝜑𝜑−sin𝜑𝜑 sin2𝜃𝜃)
2(sin2𝜑𝜑−sin2𝜃𝜃) ≪ 𝑇𝑇

2
  the first part of Equation (7) can be ignored and 𝑡𝑡 ≅ −𝑇𝑇

2
  

The corresponding value of 𝑙𝑙 can be found at 𝑡𝑡 = −𝑇𝑇
2
 : 

(8)    𝑙𝑙 = cot 2θ × (−𝑇𝑇
2

) + 𝐿𝐿 sin𝜃𝜃−𝑇𝑇 cos𝜃𝜃
2 sin2𝜃𝜃

    

Which can be rewritten as: 

(9)         𝑙𝑙 = 𝐿𝐿 sin𝜃𝜃
2 sin2𝜃𝜃

− 𝑇𝑇 cos𝜃𝜃+𝑇𝑇 cos2𝜃𝜃
2 sin2𝜃𝜃

     

At low angles, sin 𝜃𝜃 ≅  𝜃𝜃 where 𝜃𝜃 is the angle in units of radians, allowing (9) to be simplified: 

(10)          𝑙𝑙 = 𝐿𝐿
4
−  𝑇𝑇 cos𝜃𝜃+𝑇𝑇 cos2𝜃𝜃

2 sin2𝜃𝜃
      

Since  𝑇𝑇 cos𝜃𝜃+𝑇𝑇 cos2𝜃𝜃
2 sin2𝜃𝜃

≪ 𝐿𝐿
4
 the second part of Equation (10) can be ignored and 𝑙𝑙 ≅ 𝐿𝐿

4
 

Thus at low angles, the two crossing points will occur at values of (𝑇𝑇
2

, 𝐿𝐿
4
) and (−𝑇𝑇

2
, −𝐿𝐿
4

) in the beam 
frame of reference.  This relationship can be utilized to experimentally determine the length and 
thickness of the sample in the beam during experiments by collecting vertical scans across each 
angle in a small tilt series (e.g., 0°, 0.5°, 1.0°, 1.5°, 2.0°).  As such, it offers a simple contactless 
diffraction method for determining the thickness of cathode films with micron-scale precision. 
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4. Influence of sample distance errors on apparent lattice parameters 

 

Figure S4. Schematic representation of the influence of sample center of mass displacements on 
the experimental determination of diffraction angles and lattice parameters. Here, x is the radial 
distance from the beam center to a diffraction ring on a 2D area detector and z is the sample-to-
detector distance. The correct (or true) distance or angle is labelled with a subscript c while the 
uncorrected (or apparent) distance or angle is labelled with a subscript u. 

If corrections for the sample center of mass displacement are not implemented during the step of 
data integration, the refined lattice parameters will have errors that are approximately proportional 
to the error in the sample-to-detector distance, as seen in the derivation below.  To a first 
approximation, these errors can be corrected by linearly rescaling the lattice parameter data so that 
the lattice parameters are correct at a reference point in time (e.g., scale to match the known lattice 
parameters of the pristine material on diffraction data collected before the start of battery cycling).  
However, since the correction is only approximately linear (with the deviation increasing at higher 
diffraction angles), such corrections are only appropriate for preliminary data analyses. 

For data collected on a misaligned (tilted) sample at a specific beam height relative to the sample 
center, if the uncorrected assumed sample-to-detector distance (zu) is used for integration instead 
of the true distance (zc) that properly corrects for sample center of mass shifts, then the uncorrected 
d-spacing for a given reflection (du) will approximately differ from the true d-spacing for the 
reflection (dc) through the relationship: du = dc (zu / zc), as seen in the derivation below: 

(11)      λ = 2d sin𝜃𝜃 

(12)      �𝑑𝑑𝑢𝑢
𝑑𝑑𝑐𝑐
�
2

= �2λ sin𝜃𝜃𝑢𝑢⁄
2λ sin𝜃𝜃𝑐𝑐⁄ �

2
= �sin𝜃𝜃𝑐𝑐

sin𝜃𝜃𝑢𝑢
�
2
 

At low angles, sin 𝜃𝜃 ≈  𝜃𝜃 where 𝜃𝜃 is the angle in units of radians, thus: 

(13)     2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2𝜃𝜃 = 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃  
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By combining (12) and (13): 

(14)    �𝑑𝑑𝑢𝑢
𝑑𝑑𝑐𝑐
�
2

= �sin𝜃𝜃𝑐𝑐
sin𝜃𝜃𝑢𝑢

�
2

= �
1
2sin2𝜃𝜃𝑐𝑐
1
2sin2𝜃𝜃𝑢𝑢

�
2

= �sin2𝜃𝜃𝑐𝑐
sin2𝜃𝜃𝑢𝑢

�
2

=
𝑥𝑥2

𝑥𝑥2+𝑧𝑧𝑐𝑐2

𝑥𝑥2

𝑥𝑥2+𝑧𝑧𝑢𝑢2

=  𝑥𝑥
2+𝑧𝑧𝑢𝑢2

𝑥𝑥2+𝑧𝑧𝑐𝑐2
  

 

In a typical diffraction experiment, 𝑥𝑥2 ≪ 𝑧𝑧𝑐𝑐2 so �𝑑𝑑𝑢𝑢
𝑑𝑑𝑐𝑐
�
2
≈ 𝑧𝑧𝑢𝑢2

𝑧𝑧𝑐𝑐2
 and thus: 

(15)       𝑑𝑑𝑢𝑢 = 𝑑𝑑𝑐𝑐×𝑧𝑧𝑢𝑢
𝑧𝑧𝑐𝑐

   

Due to this relationship, a 1% error in detector will distance produce an error of about 1% in each 
of the three cell lattice parameters and of about 3% error in the unit cell volume. To verify this 
result, data reduction was conducted for a series of sample-to-detector distances (952 mm, 951 
mm, 950 mm, 949 mm, 948 mm, and 947 mm) that deviate from the actual value (953 mm) for 
the same diffraction pattern of a LiNi0.8Co0.15Al0.05O2 sample. This deliberate variation in the 
sample-to-detector distance for data reduction simulates the scenario where the sample-to-detector 
distance varies within the sample. In agreement with (15), the relative change in the d-spacing of 
a Bragg reflection scales with the relative deviation from the actual sample-to-detector distance 
(Figure S5). Some simulated volume changes that illustrate the effect of detector distance and 
sample tilt on the error magnitude are given in Figure S6. 

 

Figure S5. Relative change in the apparent d-spacing for the (113) reflection of a 
LiNi0.8Co0.15Al0.05O2 sample when the 1D diffraction pattern is reduced from the same 2D 
diffraction image for various sample-to-detector distances.  

  

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

R
el

at
iv

e 
ch

an
ge

 fr
om

 th
e 

re
al

 d
-s

pa
ci

ng
 (%

)

0.70.60.50.40.30.20.10.0

Relative offset from the real sample-to-detector distance (%)



10 
 

 

Figure S6. Simulated volume changes for a NMC811 sample that result from variable changes in 
the tilt angle at a fixed detector distance of 600 mm (top) or from variable changes in the detector 
distance at a fixed tilt angle (bottom). The largest errors occur near the edge of the sample while 
errors near the sample center are negligible (top) and that the error magnitude is inversely 
proportional to the detector distance (bottom). 

 




