
J. Appl. Cryst. (2020). 53, doi:10.1107/S1600576719016212 Supporting information

Volume 53 (2020)

Supporting information for article:

A routine for the determination of the microstructure of stacking
faulted nickel cobalt aluminium hydroxide precursors for
lithium nickel cobalt aluminium oxide battery materials

Sebastian Bette, Bernd Hinrichsen, Daniela Pfister and Robert, E. Dinnebier

http://dx.doi.org/10.1107/S1600576719016212
http://dx.doi.org/10.1107/S1600576719016212
http://dx.doi.org/10.1107/S1600576719016212
http://journals.iucr.org/j

S1. Additional tables and figures

Figure S1 Illustration of the transformation of the unit cell of the brucite type NAC-precursor material

in order to properly model the intercalation of carbonate ions and water molecules.

Figure S2 Comparison of the graphical results of the final Rietveld refinement of the NCA-precursor

L002 by (a) using the faultless, brucite type structure, (b) at the global minimum (straight lines) of the

one-dimensional grid search (Figure 7,a), the fit using the faultless structure model is presented in dashed

lines, (c) at the global minimum (straight lines) of the two-dimensional grid search (Figure 7, b), the fit

using the minimum of the one-dimensional parameter space is presented in dashed lines and (d) at the

global minimum (straight lines) of the three-dimensional grid search (Figure 7, b), the fit using the

minimum of the two-dimensional parameter space is presented in dashed lines.

Figure S3 3-dimensional parameter space including the probabilities of C19-, 3R- and

interstratification-type faults, the black highlighted points of the grid represents microstructural models

that yield almost identical Rwp values and therefore may represent the global minimum of the parameter

hypersurface.

Figure S4 Evolution of the random distribution of the Rwp-factors for 100 recursively created and

averaged superstructure of the NCA-precursor material while iteratively increasing the number of stacks

per sequence (a-c) and while iteratively increasing the number of sequences (d-f). The ranges of the

standard deviations (σ, 2 σ and 3 σ) are highlighted with backgrounds in different grey scale colours.

Figure S5 Evolution of the distribution of the Rwp-factors for 100 recursively created and averaged

superstructure of the NCA-precursor material in dependence of the number of stacks per sequence (left)

and the number of sequences (right). The average Rwp is indicated by a black square and the minimum

and maximum Rwp is indicated by a horizontal black bar. The evolution of the time per iteration cycle in

dependence of the number of stacks per sequence (left) and the number of sequences (right) is also

presented. The average iteration time is indicated by a blue square and the variation of the iteration time is

indicated by horizontal blue bars.

Figure S6 Illustration of a C19-type fault in the C6-type stacking that induces a subsequent

intercalation.

Table S1 Applied transition probability matrices in the 3-dimensional final grid search (top) (Figure 7,

c) and in the one-dimensional grid search for ppref (bottom) (Figure 9, b). The stacking vectors are given in

Figure 6. A, B, C, D, E, F refer to brucite-type layers, G refers to intercalation layers. Layers D, E and F

had to be added as the c-component of the stacking vector cannot be varied within a row of the transition

probability matrix in the TOPAS syntax.

from↓/to→ A B C D E F G

A

1-px-py-
pcar,

S1

px,

S2

py,

S3

pcar·
(1- px-py),

S1

pcar·px,

S2

pcar· py,

S3
0

B

1-px-py-

pcar,

S1

px,

S2

py,

S3

pcar·

(1- px-py),

S1

pcar·px,

S2

pcar· py,

S3
0

C

1-px-py-

pcar,

S1

px,

S2

py,

S3

pcar·

(1- px-py),

S1

pcar·px,

S2

pcar· py,

S3
0

D 0 0 0 0 0 0
1,

S4

E 0 0 0 0 0 0
1,

S4

F 0 0 0 0 0 0
1,

S4

G 0 0
(1-pcar),

S5
0 0

pcar,

S5
0

from↓/to→ A B C D E F G

A

1-px-py-

pcar,

S1

px-px·(1-

pcar)·ppref,

S2

py-py·(1-

pcar)·ppref,

S3

pcar·

(1- px-py),

S1

pcar·px+px·(1-

pcar)·ppref x,

S2

pcar· py+px·(1-

pcar)·ppref,

S3

0

B

1-px-py-

pcar,

S1

px,

S2

py,

S3

pcar·

(1- px-py),

S1

pcar·px,

S2

pcar· py,

S3
0

C

1-px-py-

pcar,

S1

px,

S2

py,

S3

pcar·

(1- px-py),

S1

pcar·px,

S2

pcar· py,

S3
0

D 0 0 0 0 0 0
1,

S4

E 0 0 0 0 0 0
1,

S4

F 0 0 0 0 0 0
1,

S4

G 0 0
(1-pcar),

S5
0 0

pcar,

S5
0

Figure S7 Graphical results of the final Rietveld refinements of the NCA-precursor materials by

averaging 100 supercells with 500 layers each and using transition probabilities given in Error!

Reference source not found.. The reflection positions of the ideal faultless brucite-type structure are

given in each graph.

Figure S8 IR-spectra of the investigated NCA-precursor materials

S2. Demonstration of the grid search in TOPAS syntax

S2.1. One-dimensional grid-search

In order to perform a grid-search optimization in any parameter space, a TOPAS input-file has to be

executed many times. This can be realized by the “num-runs” command (Table S2). The parameters,

which should be optimized, are varied from one run to another by an incremental value. By including

“##Run_Number##” into the syntax the run number is used as running index that increases from one run

to the next one, as it is suggested for performing a series of simulations (Dinnebier et al., 2019). For a one

dimensional grid search, the input file was executed 101 times, starting with run number 0 and ending

with run number 100. The actual run number divided by 100 was used as parameter value for Px. Hence,

in the one dimensional grid search, Px was varied from 0.00 to 1.00 in 0.01 increments (Table S2). With a

conventional PC or notebook, the one-dimensional grid search of the NCA-precursor samples takes

approx. 40-50 minutes.

Table S2 Selected commands in TOPAS syntax that were used to perform a one-dimensional grid

search in the parameter space of the transition probabilities.

TOPAS-syntax Explanation

num_runs 101 The input file is executed 101 times, i.e .101 grid points are investigated.

seed Before execution of the input file the random number generator creates a

new set of random numbers

prm !px

=(##Run_Number##)/100;

The run number is used as a running index, starting at 0, from one run to

the next one the parameter Px is increased by 0.01, which lead to Px = 1 in

the last run.

out "grid-1D.txt" append

Out(Get(r_wp),\t%11.5f)

Out(px, "\t%11.5f\n")

The Rwp value and the parameter value of Px are stored in a separate

ASCII file, as the INP-file is not modified and not OUT file is created

when “num_runs” is used

S2.2. Two-dimensional grid-search

In a two dimensional grid search, two parameters: Px and Py are optimized simultaneously, i.e. a grid has

to be created that contains all points from Px = 0.01 to Px = 1.00 and Py = 0.00 to Py = 1.00. If the

parameters are varied in 0.01 increments, this grid will contain 10099 points (excluding Px = 1.00, Py = 0).

In order to search all points, this grid is subdivided into 101 rows with each row containing 100 points

(Table S3). Within a row Px is varied from 1.00 to 0.00 in 0.01 increments and Py is kept constant. When

the grid search is completed in one row, i.e. Px = 0.00, another row is started, which means that Py is

increased by 0.01 and Px switches back to 0.99. By using the “Round” command the grid is divided into

101 rows (“rownumber”, Table S3) consisting of 100 points. In addition, the “Round” command

provides integer value for the “rownumber” running index that is increased by 1 after 100 runs. With a

conventional PC or notebook, the two-dimensional grid search of the NCA-precursor samples took

between (7 and 8) hours.

Table S3 Selected commands in TOPAS syntax that were used to perform a two-dimensional grid

search in the parameter space of the transition probabilities.

TOPAS-syntax Explanation

num_runs 10098 The input file is executed 10099 times; i.e .10099 grid points are

probed, starting at num_runs = 0.

prm rownumber =

Round((##Run_Number##-49)/100);

The running index parameter “rownumber” is created that is in

dependence on the Run_Number index. The round command provides

an integer value for this parameter. The rownumber is increased by 1

after 100 runs. This provides a subdivision of the 10099 runs into 101

sets with 100 runs each.

prm !px = ((rownumber*100+100)-

(##Run_Number##+1))/100;

The transition probability Px is varied from 1.00 to 0.01 in 0.01

increments during a set of 100 runs. At the beginning of a new set of

100 runs, Px is set back to 1.00.

prm !py = rownumber/100; The transition probability Py is varied from 0.00 to 1.00 in 0.01

increments. Within a set of 100 runs, Py is kept constant.

out "grid-2D.txt" append

Out(Get(r_wp),\t%11.5f")

Out(px, "\t%11.5f")

Out(py, "\t%11.5f\n")

The Rwp value and the parameter values of Px and Py are stored in a

separate ASCII file

S2.3. Three-dimensional grid-search

Extending a two-dimensional grid to a three-dimensional one in order to optimize both Px, Py and Pcar

requires both a further subdivision of the running index and an increase of the total number of runs. As a

full three dimensional grid search with all parameters varying from 0.00 to 0.99 in 0.01 increments

contains 100x100x100 = 10000000 points and will take several weeks on a conventional PC or notebook,

the grid search was limited to an excerpt of 0.10 ≤ Px ≤ 0.24, 0.00 ≤ Py ≤ 0.19, 0.04 ≤ Pcar ≤ 0.09 in which

the global minimum was expected based on the two dimensional grid search and which only contains

1800 points. This grid search can be realized by combing several two-dimensional grid searches in the Px-

Py parameter space (Table S3). Hence the three dimensional grid is divided into two subdivisions:

1. rows that contain 20 points in which Py is decreased from 0.19 to 0.00 in 0.01 increments and Px and

Pcar are kept constant;

2. levels that consist of 15 rows, within a level Px is increased from row to row from 0.10 to 0.24 in 0.01

increments and Pcar is kept constant,

3. the entire parameter space is divided into six levels, Pcar is increased from level to level from 0.04 to

0.09 in 0.01 increments.

The TOPAS syntax for the three dimensional grid search is presented in Table S4. With a conventional

PC or notebook, the two-dimensional grid search of the NCA-precursor samples took between (2 and 3)

hours.

Table S4 Selected commands in TOPAS syntax that were used to perform a three-dimensional grid

search in the parameter space of the transition probabilities within a range of 0.10 ≤ Px ≤ 0.24, 0.00 ≤ Py ≤

0.19, 0.04 ≤ Pcar ≤ 0.09.

TOPAS-syntax Explanation

num_runs 1799
The input file is executed 1800 times; i.e .1800 grid points are probed,

starting at num_runs = 0.

prm row =

Round((##Run_Number##*5-49)/

100);

The running index parameter “row” is created that is always increased

by 1.0 after the input file was executed for 20 times. This provides a

subdivision of the 1800 runs into 91 sets with 20 runs each.

prm levels =

Round((##Run_Number##/300)-

0.49999);

For further subdivision of the running indices, an additional running

index is introduced. The running index parameter “levels” is always

increased by 1.0 after the input file was executed for 300 times. This

provides a subdivision of the 1800 runs into 6 sets with 300 runs each.

prm rownumber =

row-(levels*15);

The running indices “row” providing a subdivision of sets of 20 runs

and “levels” providing a subdivision of sets of 300 runs are linked by

the parameter “rownumber”

prm !px = rownumber/100+0.1; The transition probability Px is varied from 0.10 to 0.24 in 0.01

increments. Within a set of 20 runs, Px is kept constant.

prm !py = (##Run_Number##/100)-

(row*(20/100));

The transition probability Py is varied from 0.00 to 0.19 in 0.01

increments during a set of 20 runs. At the beginning of a new set of 20

runs, Py is set back to 0.00.

prm !pcar = 0.04 + levels/100; The transition probability Pcar is varied from 0.04 to 0.09 in 0.01

increments. Within a set of 300 runs, Pcar is kept constant.

out "grid-2D.txt" append

Out(Get(r_wp),\t%11.5f")

Out(px, "\t%11.5f")

Out(py, "\t%11.5f")

Out(pcar, "\t%11.5f\n")

The Rwp value and the parameter values of Px, Py and Pcar are stored

in a separate ASCII file

