

Volume 52 (2019)

Supporting information for article:

Quantification of amorphous siliceous fly ash in hydrating blended cement pastes by X-ray powder diffraction

Xuerun Li, Ruben Snellings and Karen L. Scrivener

Supplementary Material for

Quantification of amorphous siliceous fly ash in hydrating blended cement pastes by X-ray

powder diffraction

Xuerun Li^{a,1,2}, Ruben Snellings^b and Karen L. Scrivener^a

^aLaboratory of Construction Materials, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland

^bSustainable Materials Management, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium

1. The phase assemblage.

Table S1: Phase assemblage of the samples in the unit of g / (100 g of paste). Results of the **dried powder**, Rietveld analysis using 13.5 - 70 degrees of XRD patterns.

Table S2: Phase assemblage of the samples in the unit of g/(100 g of paste). Results of the **fresh discs**, Rietveld analysis using **7** – **70 degrees** of XRD patterns.

Notes for the abbreviations used in the tables:

Hemicarb. = hemicarboaluminate, Monocarb. = monocarboaluminate, AFm = monosulfate, Am.FA = amorphous fly ash, CH = portlandite, AFt = ettringite.

2. Calculation process.

Table S3: The calculation process of the heat release from FA based on the DoH of clinker and the calorimetry results was also given.

Figure S1: The fitting of the FA_30 at 90 days, Rietveld analysis was carried out starting from 7 degrees.

Figure S2: The Rietveld plot of the cement with a wide 2 theta angle

Figure S3: 7-year white cement, C-S-H profile modelled using 4 peaks.

Figure S4: 90d white cement, C-S-H profile from 7-year old sample.

Figure S5: 90d white cement, crystal size of peak at 0.3037 nm was refined.

3. Bound water.

Table S4: The bound water detected by TGA

¹ Corresponding author at: MXG234, LMC IMX STI EPFL, Station 12, CH-1015 Lausanne, Switzerland. Tel.: +41 21 693 78 52; fax: +41 21 693 58 00. E-mail address: xuerun.li@basf.com, xuerunli@163.com(X. Li), karen.scrivener@epfl.ch (K.L. Scrivener)

² Current contact: BASF Construction Additives GmbH, B08, Dr-Albert-Frank-Strasse 32, 83308 Trostberg, Germany

Supplementary materials for manuscripts submitted to *Journal of Applied Crystallography,* X. Li, R. Snellings and K. Scrivener

Sample	Time (d)	C ³ S	C ₂ S	C ₃ A	C4AF	Lime	Periclase	Anhydrite	Magnetite	Quartz	AFt	СН	Hemicarb.	Monocarb.	AFm	Mullite	Arcanite	Gypsum	Am. FA
PC	0	47.1	3.6	5.1	10.0	0.2	0.4	2.9	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.9	0.0	0.0
PC	1	17.7	1.3	3.1	7.5	0.0	0.2	0.0	0.0	0.1	2.8	8.5	0.2	0.4	0.8	0.0	0.0	0.0	0.0
PC	3	11.4	1.5	1.5	6.0	0.0	0.2	0.0	0.0	0.1	2.2	10.8	0.3	0.7	2.2	0.0	0.0	0.0	0.0
PC	7	9.2	1.3	1.2	5.5	0.0	0.2	0.0	0.0	0.1	1.8	11.2	0.8	0.7	2.0	0.0	0.0	0.0	0.0
PC	28	7.0	0.9	0.9	4.7	0.0	0.2	0.0	0.0	0.2	2.4	12.6	0.5	2.0	1.9	0.0	0.0	0.0	0.0
PC	90	5.3	0.7	0.9	4.5	0.0	0.0	0.0	0.0	0.2	2.1	13.8	0.7	2.1	2.0	0.0	0.0	0.0	0.0
PC	790	5.1	1.1	0.6	3.9	0.0	0.0	0.0	0.0	0.2	1.3	13.4	0.3	0.8	2.4	0.0	0.0	0.0	0.0
FA_10	0	42.1	3.2	4.6	8.9	0.2	0.3	2.6	0.0	1.1	0.0	0.0	0.0	0.0	0.0	1.3	1.7	0.5	4.8
FA_10	1	15.3	1.5	2.3	6.7	0.0	0.2	0.0	0.0	0.8	3.3	7.5	0.0	0.4	1.2	1.7	0.0	0.0	4.0
FA_10	3	8.6	1.2	1.1	5.3	0.0	0.1	0.0	0.0	1.1	3.2	10.7	0.0	0.7	2.3	1.6	0.0	0.0	2.9
FA_10	7	6.1	0.9	0.8	4.5	0.0	0.1	0.0	0.0	1.1	2.7	12.0	0.0	1.7	2.6	1.3	0.0	0.0	3.1
FA_10	28	4.5	1.0	0.7	4.0	0.0	0.2	0.0	0.0	1.0	2.9	11.8	0.0	1.4	1.9	1.4	0.0	0.0	2.1
FA_10	90	3.8	0.6	0.6	4.0	0.0	0.1	0.0	0.0	1.1	3.4	11.1	0.2	0.7	2.8	1.3	0.0	0.0	2.1
FA_10	790	3.1	1.3	0.4	3.3	0.0	0.1	0.0	0.0	1.0	3.0	11.4	0.0	2.3	1.9	1.1	0.0	0.0	1.9
FA_30	0	32.3	2.5	3.5	6.8	0.2	0.3	2.0	0.1	2.8	0.0	0.0	0.0	0.0	0.0	4.0	1.3	1.4	14.2
FA_30	1	9.8	0.9	1.8	5.0	0.0	0.1	0.0	0.0	2.7	3.2	6.0	0.0	0.5	0.6	4.5	0.0	0.0	14.1
FA_30	3	4.8	1.4	0.9	4.0	0.0	0.2	0.0	0.0	2.9	4.2	8.2	0.1	0.5	1.2	4.3	0.0	0.0	13.7
FA_30	7	3.0	0.9	0.6	3.3	0.0	0.1	0.0	0.0	2.8	3.4	8.9	0.0	1.8	1.6	4.3	0.0	0.0	13.2
FA_30	28	1.7	0.7	0.3	2.9	0.0	0.1	0.0	0.0	2.9	4.7	8.7	0.4	1.7	1.5	4.2	0.0	0.0	11.4
FA_30	90	1.6	0.4	0.2	3.0	0.0	0.2	0.0	0.0	3.0	5.9	7.8	0.0	0.7	2.2	4.2	0.0	0.0	11.0
FA_30	790	1.2	0.5	0.2	2.4	0.0	0.2	0.0	0.0	2.7	4.7	5.9	0.0	1.1	1.8	3.8	0.0	0.0	8.9
FA_50	0	22.8	1.7	2.5	4.8	0.1	0.2	1.4	0.2	4.4	0.0	0.0	0.0	0.0	0.0	6.5	0.9	2.3	23.4
FA_50	1	5.9	0.6	1.5	3.4	0.0	0.1	0.0	0.0	4.5	3.9	4.3	0.1	0.6	0.0	6.8	0.0	0.0	23.4
FA_50	3	2.3	0.9	0.7	2.9	0.0	0.2	0.0	0.0	4.5	6.0	5.3	0.2	1.0	0.1	6.8	0.0	0.0	22.8
FA_50	7	1.4	0.6	0.3	2.5	0.0	0.1	0.0	0.0	4.4	4.7	5.1	0.0	1.1	0.3	6.6	0.0	0.0	22.1
FA_50	28	0.7	0.5	0.1	2.1	0.0	0.1	0.0	0.0	4.4	5.7	4.7	0.0	1.2	0.8	6.7	0.0	0.0	19.7
FA_50	90	0.6	0.4	0.0	1.8	0.0	0.2	0.0	0.0	4.4	8.1	3.6	0.0	1.4	0.8	6.3	0.0	0.0	18.8
FA 50	790	0.3	0.3	0.0	1.6	0.0	0.2	0.0	0.0	4.6	6.6	2.9	0.0	1.0	0.6	6.5	0.0	0.0	17.3

Table S1 Phase assemblage of the samples in the unit of g / (100 g of paste). Results of the dried powder, Rietveld analysis using 13.5 – 70 degrees of XRD patterns.

Supplementary materials for manuscripts submitted to *Journal of Applied Crystallography,* X. Li, R. Snellings and K. Scrivener

						-13/1-	- 3 - 1 -		· · · · · · · · · · · · · · · · · · ·		,						1		
Sample	Time (d)	C ₃ S	C ₂ S	C ₃ Acubic	C ₃ Aorth	C4AF	Lime	Periclase	Anhydrite	Magnetite	Quartz	AFt	СН	Hemicarb.	Monocarb.	AFm	Mullite	Arcanite	Gypsum
PC	0	47.1	3.6	1.2	4.0	10.0	0.2	0.4	2.9	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	1.9	0.0
PC	1	18.2	1.5	0.4	2.6	7.1	0.0	0.3	0.0	0.0	0.1	7.5	9.6	0.6	1.1	0.3	0.0	0.0	0.0
PC	3	13.1	1.3	0.2	1.6	6.5	0.0	0.2	0.0	0.0	0.1	8.1	11.5	0.6	1.8	0.6	0.0	0.0	0.0
PC	7	11.2	1.9	0.2	1.1	6.0	0.0	0.2	0.0	0.0	0.1	7.6	12.8	1.2	1.2	1.0	0.0	0.0	0.0
PC	28	8.4	1.6	0.3	0.6	5.2	0.0	0.2	0.0	0.0	0.1	7.8	14.0	0.5	1.2	2.0	0.0	0.0	0.0
PC	90	7.5	1.4	0.3	0.7	5.4	0.0	0.2	0.0	0.0	0.1	6.0	14.1	0.6	0.9	2.0	0.0	0.0	0.0
PC	790	5.0	1.2	0.0	0.7	3.3	0.0	0.1	0.0	0.0	0.2	6.2	13.9	0.0	3.3	4.1	0.0	0.0	0.0
FA_10	0	42.1	3.2	1.0	3.5	8.9	0.2	0.3	2.6	0.0	1.1	0.0	0.0	0.0	0.0	0.0	1.3	1.7	0.5
FA_10	1	15.6	0.8	0.5	2.2	6.3	0.0	0.3	0.0	0.0	1.5	7.9	8.3	0.7	0.8	0.3	1.8	0.0	0.0
FA_10	3	9.7	1.3	0.4	1.0	6.0	0.0	0.2	0.0	0.0	1.1	8.1	11.0	0.7	0.8	0.9	1.7	0.0	0.0
FA_10	7	8.6	0.9	0.3	0.6	5.1	0.0	0.1	0.0	0.0	1.0	5.8	11.4	0.8	0.2	0.0	1.8	0.0	0.0
FA_10	28	6.4	1.0	0.3	0.4	4.4	0.0	0.0	0.0	0.0	1.1	6.1	11.6	0.0	0.6	0.6	1.8	0.0	0.0
FA_10	90	3.9	1.3	0.1	0.4	3.6	0.0	0.3	0.0	0.0	1.2	9.3	12.2	0.0	1.1	3.2	1.5	0.0	0.0
FA_10	790	3.4	0.5	0.0	0.5	2.8	0.0	0.1	0.0	0.0	1.2	7.4	10.7	1.4	2.5	3.4	1.9	0.0	0.0
FA_30	0	32.3	2.5	0.8	2.7	6.8	0.2	0.3	2.0	0.1	2.8	0.0	0.0	0.0	0.0	0.0	4.0	1.3	1.4
FA_30	1	9.8	0.7	0.5	1.4	5.0	0.0	0.3	0.0	0.0	3.4	7.7	6.3	0.1	0.2	0.2	5.1	0.0	0.0
FA_30	3	5.3	0.9	0.2	0.7	3.9	0.0	0.1	0.0	0.0	3.3	9.4	9.1	0.4	0.9	0.6	4.7	0.0	0.0
FA_30	7	3.7	0.8	0.2	0.4	3.5	0.0	0.1	0.0	0.0	3.4	7.3	9.1	0.8	0.8	0.5	5.0	0.0	0.0
FA_30	28	2.3	0.5	0.1	0.2	2.7	0.0	0.1	0.0	0.0	3.2	7.2	10.0	0.2	0.8	0.8	4.8	0.0	0.0
FA_30	90	1.4	1.0	0.1	0.3	2.9	0.0	0.1	0.0	0.0	3.4	10.2	8.0	0.2	1.0	2.5	4.4	0.0	0.0
FA_30	790	1.1	0.9	0.0	0.1	2.4	0.0	0.3	0.0	0.0	3.1	8.7	7.9	0.0	0.9	2.2	4.3	0.0	0.0
FA_50	0	22.8	1.7	0.6	1.9	4.8	0.1	0.2	1.4	0.2	4.4	0.0	0.0	0.0	0.0	0.0	6.5	0.9	2.3
FA_50	1	6.5	0.6	0.3	0.9	3.4	0.0	0.2	0.0	0.0	4.7	5.1	4.6	0.2	0.7	0.0	7.8	0.0	0.0
FA_50	3	3.3	1.1	0.2	0.5	2.9	0.0	0.2	0.0	0.0	4.6	8.7	5.9	0.1	1.0	0.0	7.1	0.0	0.0
FA_50	7	1.6	0.7	0.0	0.4	2.4	0.0	0.3	0.0	0.0	5.1	9.7	5.6	0.3	1.5	0.2	7.3	0.0	0.0
FA_50	28	0.6	0.6	0.0	0.2	2.0	0.0	0.3	0.0	0.0	5.3	11.0	4.9	0.0	0.6	0.8	7.3	0.0	0.0
FA_50	90	0.6	0.4	0.0	0.0	1.9	0.0	0.3	0.0	0.0	5.0	11.3	4.3	0.0	0.6	0.8	7.2	0.0	0.0
FA_50	790	0.3	0.4	0.0	0.0	1.5	0.0	0.3	0.0	0.0	5.2	9.7	2.9	0.0	0.6	0.8	7.1	0.0	0.0

Table S2 Phase assemblage of the samples in the unit of g / (100 g of paste). Results of **the fresh discs**, Rietveld analysis using **7 – 70 degrees** of XRD patterns.

Supplementary materials for manuscripts submitted to *Journal of Applied Crystallography,* X. Li, R. Snellings and K. Scrivener

Samples	Ages (d)	DoH (%)		Heat (J/g SCM added)		
		of clinker (XRD)	from clinker	Detected by Calo.	from FA	
	1	54.9	138	–	20	
DC	3	69	206	Equation	PC:	
PC	7	73.8	225	Heal = 4.50	.1.42,	
	28	79.5	250	ľ		
54 40	1	56	128.78	122	-6.78	-95.63
	3	72.5	196.07	193	-3.07	-43.34
FA_10	7	79	222.58	214	-8.58	-121.00
	28	82.6	237.26	238	0.74	10.37
	1	61.1	114.79	102	-12.79	-60.92
FA 20	3	75.5	159.86	168	8.14	38.76
FA_30	7	82.7	182.40	194	11.60	55.26
	28	87.7	198.04	220	21.96	104.55
	1	64.1	87.54	70	-17.54	-50.79
FA_50	3	78.9	120.20	123	2.80	8.12
	7	84.9	133.43	152	18.57	53.75
	28	89	142.48	181	38.52	111.51

Table S3 Fly ash degree of reaction calculation from combined XRD and calorimetry data

Table S4 The bound water detected by TGA

Time	Bound wa	ter until 550	°C (wt. % in	dried basis)
days	РС	FA_10	FA_30	FA_50
1	12.49	11.74	9.83	7.12
3	14.46	14.14	12.71	10.69
7	15.46	15.03	14.86	12.32
28	16.88	16.53	16.42	14.23
90	18.13	17.91	16.21	14.43
790	16.99	17.95	16.88	14.54

Supplementary materials for manuscripts submitted to *Journal of Applied Crystallography,* X. Li, R. Snellings and K. Scrivener

Figure S1 The fitting of the FA_30 at 90 days, Rietveld analysis was carried out starting from 7 degrees.

Figure S2 The Rietveld plot of the cement with a wide 2 theta angle.

Figure S3 7-year white cement, C-S-H profile modelled using 4 peaks.

Figure S4 90d white cement, C-S-H profile from 7-year old sample

Figure S5 90d white cement, crystal size of peak at 0.3037 nm was refined