

Volume 52 (2019)

Supporting information for article:

Crystal structure of Mo-substituted lanthanum tungstate La_{5.4}W₁₋ $_y$ Mo $_y$ O₁₂₋₅ (0 $\le y \le$ 0.2) studied by X-ray and neutron diffraction

Andrea Fantin, Tobias Scherb, Janka Seeger, Gerhard Schumacher, Uta Gerhards, Mariya E. Ivanova, Wilhelm A. Meulenberg, Roland Dittmeyer and John Banhart

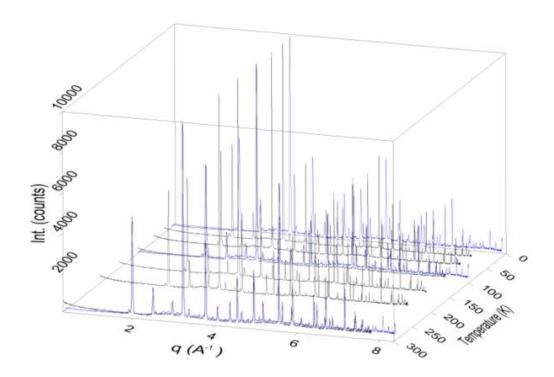

S1. Average X-ray scattering power

Table S1 Refined site occupancy factors, SOF, of the cation sites 4a and 48h of the non-substituted LWO_P and the single-phase LW(Mo)O-D₂O(SA) specimens obtained through the average X-ray scattering power approach. Also, the corresponding La/(W+Mo) ratio determined by EPMA, the amount of anti-site disorder, $W_2 + Mo_2$ on La₂ (at. % and e⁻/atom), and the contributions of W_2 and Mo_2 on La₂ (e⁻/atom) according to EPMA, are depicted.

Samples in $D_2O(SA)$ state, temperature	SOF_{4a}^{W}	$SOF_{48h}^{La_2}$	La/(W+Mo) EPMA	W ₂ + Mo ₂ on La ₂ (EPMA) at. %	$W_2 + Mo_2$ on La_2 (EPMA) $e^{-}/atom$	W ₂ , Mo ₂ on La ₂ (EPMA) e ⁻ /atom
LWO_P (295 K)	1.044(2)	0.5076(6)	5.56(3)	3.66(7)	2.46	2.46, 0
Mo1 (100 K)	1.027(2)	0.5053(7)	5.62(3)	3.43(7)	2.293	2.29, 0.003
Mo5 (100 K)	1.003(2)	0.5037(6)	5.64(3)	3.42(8)	2.28	2.23, 0.05
Mo20(1) (100 K)	0.927(4)	0.5030(13)	5.64(3)	3.40(9)	2.06	1.85, 0.21
Mo20(2) (295 K)	0.923(2)	0.5028(6)	5.64(5)	3.42(17)	2.06	1.85, 0.21

The occupancy of the 48h position is delicate in a sense that it depends on the La/(W+Mo) ratio and is also correlated to the other occupancies, especially to SOF_{4b}^{La1} . To reduce this correlation, La₁, O₁ and O₂ occupancies for all the specimens were fixed to $SOF_{4b}^{La1} = 1$, $SOF_{96k}^{O1} = 0.25$ and $SOF_{32f}^{O2} = 0.95$, respectively. The minor differences in the oxygen content for all specimens have been assumed invisible with X-rays such as the vacancy concentration difference on the O₂ position. The amount of anti-site disorder calculated (W₂ + Mo₂ on La₂, Table 4) shows that for each LW(Mo)O specimen about 3.5 at. % of the 48h site is available to locate W (W₂) and/or Mo (Mo₂), and the remaining 96.5 at. % locates La (La₂). If W and Mo statistically occupy the available 3.5 at. % of anti-site disorder, a difference of only about 0.4 e⁻¹ /atom between LWO_P and the Mo2O specimens is obtained (see last two columns in Table 4). Moreover, the reported values of electron per atom in the last column of Table 4 have to be divided by a factor of two to account for the 48h site half-occupancy. Such small contributions to the scattering by a mixture of W (67.3 e⁻¹) and Mo (31.4 e⁻¹) are expected to be difficult to separate from the main scatterer of the 48h site, La₂ (96.5 at. %, 53.5 e⁻¹, see Table 1) even with synchrotron X-ray diffraction.

S2. Temperature dependence of LW(Mo)O with neutron diffraction

Figure S1 Neutron diffraction intensity as a function of q of sample Mo20(2)-dry(Ar) for various temperatures between T = 10 K and T = 298 K. The black and blue lines represent the diffraction patterns taken at D2B (T = 30 K, 60 K, 100 K, 150 K, 200 K, 298 K) and at HRPT (T = 10 K, 100 K, 295 K), respectively. The patterns are normalized to 10000 counts. The representation in q is required due to the different wavelengths used at D2B ($\lambda^{D2B}=1.594$ Å, black patterns) and at HRPT ($\lambda^{HRPT}=1.494$ Å, blue patterns).