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1. Instrument broadening. 

The broadening arises from two factors: the incident X-ray character and the X-ray 

detection geometry. As shown in Fig. S1, the incident X-ray beam to the sample had a wave 

number of 𝑄𝛼  (4.075 Å−1, where we assume 𝜔 = 2𝜃 = 0 in Eq. 1 and Fig. 3 for simplicity) 

with a line width of Δ𝑄𝛼 reflecting the longitudinal coherence length and the divergence 

angle of Δ𝜃𝑖𝑛  reflecting the transverse coherence length. In real space, the divergence induces 

incident beams 0-1, 0-4, and 0-5 in Fig. S1(a). In wave-number space, these correspond to 

incident vectors 𝐾𝑖𝑛  from 0 to 1, 4, and 5 on the Ewald sphere of radius 𝑄𝛼  in Fig. S1(b). 

Δ𝑄𝛼 results in the Ewald sphere width, corresponding to incident vectors 0-2 and 0-3.  

The zero-dimensional (0D) X-ray detector with the slit acceptance angle of Δ2𝜃𝜒 was 

located a distance of 285 mm from the sample (i.e., the acceptance target length of ≲2.5 mm. 

In our X-ray condition, the irradiated area was ≃11 mm in length and 2 mm in width. Since 

the whole acceptance region is covered by the irradiated area, outgoing X-ray beams 0-6, 0-

9*, and 0-10* can be detected, as shown in Fig. S1(a). When the rotation of the detector (2𝜃𝜒 

scan) and sample (𝜙 scan), the slit also reduces the divergence between beams 0-9 and 0-10 

in Fig. S1(a). Note that beams 0-9* and 0-9 are the same outgoing vector 𝐾𝑜𝑢𝑡  in wave-

number space, Fig. S1(b).  

In reciprocal space as shown in Fig. S1(c), scattering vectors 4-9, 2-8, 5-10, and 3-7 induce 

mostly ellipsoidal broadening with 𝑄𝑟  and 𝑄𝜑 axes around center scattering-vector 1-6. The 

broadening along 𝑄𝑟  (𝑄𝜑) axes can be described as the components of (i) the longitudinal-

coherence part as ≃Δ𝑄𝛼 sin𝜃𝜒 (2Δ𝑄𝛼 cos𝜃𝜒) corresponding to scattering vectors 2-8 and 

3-7, (ii) the transverse-coherence part as ≃𝑄𝛼Δ𝜃𝑖𝑛 cos𝜃𝜒 (𝑄𝛼Δ𝜃𝑖𝑛 sin𝜃𝜒) corresponding to 

4-6 and 5-6, (iii) the acceptance angle part as ≃ 𝑄𝛼Δ2𝜃𝜒 cos 𝜃𝜒  ( 𝑄𝛼Δ2𝜃𝜒 sin𝜃𝜒 ) 

corresponding to 1-9 and 1-10, and (iv) the rotation part as ≃ 2𝑄𝛼 cos 𝜃𝜒Δ𝜃𝜒 

(2𝑄𝛼 sin𝜃𝜒 Δ2𝜃𝜒) being 
𝑑𝑄𝑟

𝑑𝜃𝜒
Δ𝜃𝜒 (𝑄𝑟Δ𝜙) where 𝑄𝑟 = 2𝑄𝛼 sin𝜃𝜒. When we treat Gaussian 

form, the square of instrument broadening 𝜎𝑖𝑛𝑠𝑡−𝑟  (𝜎𝑖𝑛𝑠𝑡−𝜑) is the sum of the square of each 

component in (i)-(iv).  

Measured 2D RSMs for Si 220, 2̅20, and 040 reflections are displayed in Figs. S2(a), S2(b), 

and S2(c), respectively. We can confirm ellipsoidal broadenings elongated to the radial 

directions: 𝑄𝑥
⃑⃑ ⃑⃑   for 220, 𝑄𝑦

⃑⃑⃑⃑  ⃑ for 2̅20,and 𝑄𝑥
⃑⃑ ⃑⃑  + 𝑄𝑦

⃑⃑⃑⃑  ⃑ for 040, where 𝜎𝑖𝑛𝑠𝑡−𝑟  along 𝑄𝑟  is similar, 

while 𝜎𝑖𝑛𝑠𝑡−𝜑along 𝑄𝜑  increases with 𝑄𝑟 . Table S1 shows measured 𝜎𝑖𝑛𝑠𝑡−𝑟  and 𝜎𝑖𝑛𝑠𝑡−𝜑 

with 2𝜃𝜒0  for Si 220 2̅20⁄  and 040  reflections. Using these values, we optimized Δ𝑄𝛼 

(≃0.007 Å−1 ) corresponding to ≃600 Å  in longitudinal coherence, Δ𝜃𝑖𝑛  (≃0.47 ° ) 

corresponding to ≃200 Å in transverse coherence, and Δ2𝜃𝜒 (≃0.25°). These lead to 𝜎𝑖𝑛𝑠𝑡−𝑟  

(𝜎𝑖𝑛𝑠𝑡−𝜑) of approximately 0.0182 Å−1  (0.0087 Å−1), 0.0179 Å−1  (0.0094 Å−1), and 0.0116 

Å−1 (0.0174 Å−1) for β-FeSi2 041, 042 024̅⁄ , and 082 028⁄  reflections. 
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Fig. S1. Top-view schematics of X-ray diffraction in (a) real space, (b) Ewald-sphere 

picture, and (c) reciprocal space, when 𝜔 = 2𝜃 = 0 in Fig. 3. 𝐾𝑖𝑛  and 𝐾𝑜𝑢𝑡  are the incident 

and diffracted X-ray vectors, with the divergence angle Δ𝜃𝑖𝑛  (inducing the transverse 

coherence) from the source and the acceptance angle Δ2𝜃𝜒 to the detector, respectively. The 

X-ray with a pair of numbers (e.g., 0-1) in (a) corresponds to the vector terminated with the 

same pair in (b). The Ewald radius of 𝑄𝛼  (= |𝐾𝑖𝑛| = |𝐾𝑜𝑢𝑡 |) in (b) has the width of Δ𝑄𝛼 

inducing the longitudinal coherence. The scattering vector 𝑄𝑟 = 𝐾𝑜𝑢𝑡 − 𝐾𝑖𝑛  in (b) is the 

basis of the reciprocal space map of (c) in the kinematical theory. Thus in (c), the scattering 

vectors (e.g., 5-10), around vector 1-6 corresponding to the peak center, contribute the 

instrument broadening. 

 

 



 

Fig. S2. 2D RSMs of Si reflection (a) 220, (b) 2̅20, and (c) 040. 

 

 

Table S1. Diffraction angle 2𝜃𝜒 0, instrumental broadenings 𝜎𝑖𝑛𝑠𝑡−𝑟  in 𝑟  direction and  

𝜎𝑖𝑛𝑠𝑡−φ in φ direction for Si reflections. 

 

 

 

 

2. Analysis procedures  

All data analyses were performed by homemade programs. The conversion from XRD 

results to 2D RSM in Eqs. 1 and 2 leads to intensities as a function of certain 𝑄𝑥 and 𝑄𝑦 

sets. The experimental 2D RSMs in Figs. 4(a), 4(b), 4(i), and 4(j) with a step (pixel) of 

0.0005 Å−1 were obtained by an interpolation from the 𝑄𝑥 and 𝑄𝑦 sets, using macro 

programs in the Image J application (https://imagej.nih.gov/ij/).  

In the Gaussian fit, a program in the Mathematica application 

(https://www.wolfram.com) loaded the experimental 2D-RSMs, and minimized the residual 

from Gaussian functions at fixed ϵ and 𝐷 according to Eqs. 7 and 8, using a FindMinimum 

command with an InteriorPoint algorism. The calculation resulted in 𝐼𝑏𝑔, 𝐼𝑝𝑒𝑎𝑘, and the 

residual value as displayed in Fig. 7, 𝑅 maps. Since the number of unknown parameters are 

restricted to a few, and monitored convergence-process was smooth, the results are global 

minimum as indicated by a "monotonic" function of ϵ and 𝐷 in Fig. 7. The calculation time 

was several sec per condition of fixed ϵ and 𝐷 using a single processor.  



In the Laue fit, similar programs in Mathematica was used for the calculations in Eqs. 9-

13: (i) setting arbitrary unit-positions with 𝜖𝑏 , 𝜖𝑐 , 𝑁𝑏 , and 𝑁𝑐 (Eq. 9), (ii) the evaluation of 

𝐿𝐴 as a function of 𝑘𝑥  and 𝑘𝑦 with 0.001 Å−1 step (Eq. 9), (iii) the convolution of 𝐿𝐴 to 𝐿𝐶𝐴 

with the integration by 𝑘𝑥  and 𝑘𝑦 with 0.001 Å−1 step within the 3σ region (Eqs. 10-11), 

and (iv) the evaluation of the residual value (Fig. 8(a)) at fixed 𝜖𝑏  and 𝜖𝑐  (Eqs. 12-13), 

using the FindMinimum command which led to a global minimum. The calculation time in 

process (iv) was about 20 sec per condition. The first convolution-forming in process (iii) 

required about 8 hours but sequential convolutions required 5 min per condition. This will 

be improved using by fast convolution methods. The other calculation times were 

negligible.  

For the inhomogeneous strain calculation in Eq. 14, the FindMinimum command was 

also used. Although the number of unknown parameters were over 360, it should be close 

to the global minimum because initial values in parameters did not affect the results in a 

few searching calculations. The calculation time was over 100 hours. Some calculations 

were performed in parallel using multiple processing systems in NAIST.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. 2D Laue fit for inequivalent and homogeneous system 

The residual map as a function of 𝜖𝑏  and 𝜖𝑐  for 𝑁 = 𝑁𝑏 = 𝑁𝑐 = 20 (𝐷 ≃ 160 Å) is shown 

in Fig. S3; 𝑅𝑚𝑖𝑛 is 0.18 at 𝜖𝑏 = 0.0% and 𝜖𝑐 = −0.3%. This is larger than 𝑅𝑚𝑖𝑛 = 0.10 for 

𝑁 = 30 (𝐷 ≃ 230 Å) in Fig. 8(a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3. Residual map as a function of inequivalent strains 𝜖𝑏  and 𝜖𝑐  along 𝑏 and 𝑐 axes, 

respectively, at 𝐷 ≃ 160 Å (𝑁 = 20) under the homogeneous strain. 𝑅𝑚𝑖𝑛is 0.18 at 𝜖𝑏 =

0.0% and 𝜖𝑐 = −0.0%. 

 

 


