

Volume 52 (2019)

Supporting information for article:

Protein crystal structure determination with the crystallophore, a nucleating and phasing agent

Sylvain Engilberge, Tristan Wagner, Gianluca Santoni, Cécile Breyton, Seigo Shima, Bruno Franzetti, Francois Riobé, Olivier Maury and Eric Girard

S1. Procedure of production and purification of samples from Methanothermococcus thermolithotrophicus

Methanothermococcus thermolithotrophicus (DSM 2095), obtained from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ, Braunschweig, Germany) was grown at 65 °C as previously described (Wagner et al., 2017).

Protein fractions have been enriched and purified using the shotgun approach as described in (Vögeli et al., 2018). The purification of fractions A-D were performed under anoxic atmosphere (95% N₂/5% H₂) at 18 °C and without any freezing step. About 40 g of wet cell pellets were suspended in lysis buffer (50 mM MOPS/NaOH pH 7.0, 10 mM MgCl₂ and 2 mM dithiothreitol) with a ratio of 10 ml lysis buffer per g of pellet. The cells were lysed by osmotic shock at 18°C under gentle stirring with an addition of 2.0 U/ml benzonase to reduce viscosity. The lysate was centrifuged twice at 10,000 ×g for 60 min at 4 °C to remove cell debris. The supernatant was applied on a DEAE Sepharose fast-flow column (65 ml) equilibrated with 50 mM Tricine/NaOH pH 8.0 containing 2 mM dithiothreitol (DTT) (buffer A). The column was washed at a flow rate of 4.5 ml/min for 2 column volumes. The elution step was performed through a gradient of increasing concentration of NaCl from 50 mM to 350 mM in 5 column volumes. The protein fractions eluted between 130 and 240 mM NaCl were pooled and diluted with an equal volume of buffer A and then the sample was loaded on a Q-Sepharose fast-flow column (50 ml) (GE Healthcare, Freiburg) pre-equilibrated in buffer A. The column was washed with 200 mM NaCl, and the proteins were eluted at a flow rate of 3.0 ml/min with a gradient from 200 to 400 mM NaCl in 3 column volumes. Protein fractions eluted between 235 - 370 mM NaCl were pooled and diluted with an equal volume of 25 mM sodium phosphate buffer pH 7.6, containing 2 mM DTT (buffer B) and passed on a hydroxyapatite ceramic type I column (45 ml) (Macroprep; Bio-Rad; München, Germany) equilibrated with buffer B. The column was washed at 3 ml/min with buffer B with 5 column volumes and the flow-through containing the protein from fraction A and B was collected. A gradient of 25 - 500 mM of sodium phosphate was applied to the hydroxyapatite for 4 column volumes and the protein fractions eluted at 240 - 490 mM sodium phosphate pH 7.6 were collected. This latter protein pool containing the fraction C and D was subsequently diluted with three volume of 25 mM Tris/HCl, pH 7.6, containing 2.0 M (NH₄)₂SO₄ and 2 mM DTT (buffer C), and injected on a Source 15 Phenyl column (15 ml) that was pre-equilibrated in the same buffer. After washing the column with 1 column volume of buffer C, the elution was done at a flow rate of 1 ml/min with a gradient from 2.0 to 0 M (NH₄)₂SO₄ in 14 column volumes. Protein of fraction C eluted within a range of 0.90 - 0.77 M (NH₄)₂SO₄ and protein from fraction D eluted within the range of 0.73 - 0.60 M (NH₄)₂SO₄. Each fraction (hydroxyapatite flow-through containing A and B; fraction C and fraction D from Source 15 Phenyl column) was concentrated by passing them through a 50 kDa cut-off filter (Merck Millipore, Darmstadt, Germany). Ultimately, the concentrated sample was injected onto a 10/300 Superose 6 column (GE Healthcare) equilibrated in 25 mM Tris/HCl pH 7.6,

containing 10% glycerol and 2 mM DTT and eluted at a flow rate of 0.4 ml/min. The flow through fraction from the hydroxyapatite containing the protein from fraction A and B were injected on the Superose 6 and both fractions were separated by their elution volume: 10.6 - 13.6 ml for fraction A and 14.1 - 18.1 ml for fraction B. Proteins from fraction C were injected on the Superose 6 and eluted between 11.6 and 14.9 ml. Proteins from fraction D eluted between 13.6 and 16 ml on the Superose 6.

Table S1 Crystallization, soaking and cryo-preserving solutions used for the different proteins studied in the present work.

Protein acronym	Crystallization condition	Cryo-preserving solution	Soaking
pb9	10 % PEG8000	10 % PEG8000	In cryo solution
	8 % Ethylene glycol	25 % Ethylene glycol	Soaking time 2 min
	100 mM HEPES pH 7.5	100 mM HEPES pH 7.5	
	10 mM Tb-Xo4	100 mM Tb-Xo4	
PhP1	2.8 - 3.2 M Malonate pH 5.5	3.4 M Malonate pH 5.5	In cryo solution
	10 mM Tb-Xo4	100 mM Tb-Xo4	Soaking time 2 min
FprA form 1	20 % PEG 8000	20 % PEG 8000	None
	200 mM Ammonium sulphate	200 mM Ammonium sulphate	
	10 % 2-propanol	10 % 2-propanol	
	100 mM HEPES pH 7.5	100 mM HEPES pH 7.5	
	10 mM Tb-Xo4	25 % Glycerol	
FprA form 2	28 % PEG 400	28 % PEG 400	None
	200 mM Calcium chloride	200 mM Calcium chloride	
	100 mM HEPES pH 7.5	100 mM HEPES pH 7.5	
	10 mM Tb-Xo4	10 mM Tb-Xo4	
ThiS form 1	1.6 M Magnesium sulphate	1.6 M Magnesium sulphate	None
	100 mM MES pH 6.5	100 mM MES pH 6.5	
	10 mM Tb-Xo4	25 % Glycerol	
ThiS form 1 soaked	44 % PEE 797	44 % PEE 797	In cryo solution
with Tb-Xo4	100 mM HEPES pH 8.0	100 mM HEPES pH 8.0	Soaking time 9 min
		100 mM Tb-Xo4	
ThiS form 2	28 % PEG 400	28 % PEG 400	None
	200 mM Calcium chloride	200 mM Calcium chloride	
	100 mM HEPES pH 7.5	100 mM HEPES pH 7.5	
	10 mM Tb-Xo4	10 mM Tb-Xo4	
ThiS form 3	45 % PEP 629	45 % PEP 629	None
	300 mM Potassium chloride	300 mM Potassium chloride	

	100 mM TRIS pH 8.5	100 mM TRIS pH 8.5	
	10 mM Tb-Xo4	10 mM Tb-Xo4	
AdkA	25 % PEP 629	25 % PEP 629	In cryo solution
	50 mM Magnesium chloride	50 mM Magnesium chloride	Soaking time 6 min
	100 mM HEPES pH 7.5	100 mM HEPES pH 7.5	
	10 mM Tb-Xo4	50 mM Tb-Xo4	
GlnA	35 % PEE 797	35 % PEE 797	None
	200 mM Ammonium sulphate	200 mM Ammonium sulphate	
	100 mM HEPES pH 7.5	100 mM HEPES pH 7.5	
	10 mM Tb-Xo4	10 mM Tb-Xo4	

PEP 629 stands for Pentaerythritol propoxylate (17/8 PO/OH); PEE 797 stands for Pentaerythritol ethoxylate (15/4 EO/OH)

 Table S2
 X-ray refinement statistics.

	Protease 1	AdkA	ThiS form1
DDD I-			
PDB code	6HF6	6HF7	6HK1
Resolution (Å) ^a	19.99 - 2.00 (2.08 - 2.00)	48.92 - 1.96 (2.03 - 1.96)	49.09 - 2.55 (2.64 - 2.55)
No. of reflections	69161 (6821)	55799 (5378)	79189 (7534)
Reflections used for R _{free} ^b	3384 (338)	2824 (264)	3957 (362)
R_{work}	0.162	0.171	0.189
R _{free} b	0.181	0.190	0.213
No. of atoms			
Proteins	3931	4494	12405
Ligand/ion	115	76	315
Water	553	550	438
B factors $(\mathring{A})^2$			
Protein	37.67	50.24	56.23
Ligand/ion	53.41	42.56	66.14
Water	56.10	55.50	61.36
R.m.s deviations ^c			
Bond lengths (Å)	0.013	0.015	0.009
Bond angles (°)	1.57	1.58	1.44
Clashscore	0.62	0.87	1.51
Ramachandran favored (%)	99.39	98.24	97.80
Ramachandran allowed (%)	0.61	1.59	2.20
Ramachandran outliers (%)	0.00	0.18	0.009

 $[^]a$ Values relative to the highest resolution shell are within parentheses. b R_{free} was calculated as the R_{work} for 5% of the reflections that were not included in the refinement. c R.m.s., root mean square.

Table S3 Raw data availability.

Data set	Corresponding DOI
Protease1 MeshAndCollect	https://doi.org/10.5281/zenodo.2640319
pb9 MeshAndCollect	https://doi.org/10.5281/zenodo.2640356
FprA crystal form1	https://doi.org/10.5281/zenodo.2641965
FprA crystal form2	https://doi.org/10.5281/zenodo.2641991
ThiS crystal form3	https://doi.org/10.5281/zenodo.2641868
AdkA	https://doi.org/10.5281/zenodo.2641812