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I. NITROGEN ADSORPTION-DESORPTION CHARACTERIZATION OF THE SUPPORT

FIG. SI-1. Adsorption and desorption isotherms measured on the empty Vulcan support (a, + adsorption and ◦ desorption),
t-plot obtained from the adsorption branch, with the least-square fit (red) from which the surface area (excluding micropores)
the micropore volume are obtained (b), and mesopore size distribution obtained with the Derjaguin-Broekhoff-de Boer method
(c, adsorption in red and desorption in blue).

The nitrogen adsorption/desorption isotherms measured on the Vulcan support is shown in Fig. SI-1a, from which
one can make the following qualitative observations [1]. The fact that the isotherms do not reach a plateau close
to saturation testifies to a mostly macroporous structure (i.e. with pores larger than 50 nm). The slight adsorp-
tion/desorption hysteresis suggests also at the presence of mesopores (with size between 2 and 50 nm). Moreover, the
shape of the isotherms at small pressures hints at micropores (smaller than 2 nm).

Figure SI-1b displays a so-called t-plot, by which the quantity of nitrogen adsorbed at a given pressure is plotted
against the statistical thickness t of the adsorbed layer at that particular pressure. The expression for the the pressure-
dependent thickness t is the same as in [2]. The slope of the linear fit (see figure) provides the so-called external
surface area Sext ' 140 m2/g, and the intercept provides the micropore volume Vµ ' 0.038 cm3/g. The surface area
Sext is external to the micropores; it accounts for both the meso and macropores.

Figure SI-1c plots the pore-size distribution obtained from the adsorption and desorption isotherms in Fig. SI-
1a, using the Derjaguin-Brokehof-de Boer method [2]. Globally, the pore-size distribution confirms the qualitative
assessment based on the shape of the isotherms, namely: the material comprises a few large mesopores and macropores
(the distributions do not level-off for large pores).

The qualitative aspect of the structure are sketched in Fig. SI-2. Because the resolution of the SAXS is larger than
the micropores, the micropore structure is accounted for in the main text by treating the carbon and micropores as
an effective homogeneous medium with density lower than the carbon. The carbon density in the Vulcan support,
measured by Helium pycnometry is ρ̄C = 1.95 g/cm3 [3]. Based on that value, the effective density of the microporous
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FIG. SI-2. Qualitative sketch of the Vulcan structure, comprising microporous carbon structures separated by pores in the
meso- macropore size range.

carbon is calculated as

ρ̄S =
ρ̄C

1 + 1 + ρ̄CVµ
' 1.81 g/cm

3
(SI-1)

where we use the general notation ρ̄X for the specific mass [g/cm3] to distinguish it from the electron density ρX
[F/cm3].

II. DERIVATION OF EQS. (26) AND (29) OF THE MAIN TEXT

Using the same notations a in Sec. 4.2 of the main text, the indicator function of the metal nanoparticles is defined
as

IP (x) =
∑
i

pi (x− xi) (SI-2)

where IP is the indicator function of the set of all particles, and pi is the indicator function of the ith particle
specifically. The positions xi are homogeneously distributed within a loading region L. The probability density
distribution of the centre x of any particle is therefore IL(x)/VL, where IL is the indicator function of the loading
region and VL is its volume.

The volume fraction of the particles, φP , is calculated as the average value of IP (x), i.e.

φP =
1

V

∫
dVx IP (x) =

Np
V
〈Vp〉 (SI-3)

where Np is the number of particles, and the integral is over x with the integration volume V is taken as infinitely
large. The second equality results from

〈Vp〉 =
1

Np

∑
i

∫
dVx pi(x) (SI-4)

One has to evaluate the limit of these expressions when the integration volume becomes infinitely large with Np/VL =
θp kept constant, where VL is the volume of the loading regions. One finds

φP = θpφL〈Vp〉 (SI-5)

where φL = VL/V is the volume fraction of the loading region.
The covariogram of the particle phase is evaluated as

CPP (r) =
1

V

∑
ij

∫
dVx pi(x− xi + r)pj(x− xj) (SI-6)

with the same implicit limit here as above, namely that the integration volume becomes infinitely large, with the
number of particles increasing like Np = θpVL, with VL = φLV . Splitting the contributions i = j from i 6= j in the
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sum leads to

CPP (r) =
Np
V
K(r) +

1

V

∑
i6=j

K̃(xj − xi + r) (SI-7)

where the geometrical covariogram of the individual particles is defined as

K(r) =

〈∫
pi(x + r)pi(x) dVx

〉
(SI-8)

where the brackets mean here the average over all the parameters that define the shape and size of the ith particle.
The other covariogram-like quantity K̃(r) is defined as

K̃(r) =

〈∫
pi(x + r)pj(x) dVx

〉
=

∫
〈pi(x + r)〉 〈pj(x)〉 dVx (SI-9)

where i 6= j. The second equality results from assuming that the parameters that characterize the size and shape of
two different particles i and j are statistically independent.

The first term in Eq. (SI-7) can be written as θpφLK(r). The second sum in Eq. (SI-7) can be evaluated by writing
the sum over xi and xj like integrals over the entire volume of the loading region L, i.e. replacing∑

i 6=j

→ θ2p

∫
dVxi

∫
dVxj

IL(xi)IL(xj) (SI-10)

where IL is the indicator function of the loading region. This is equivalent to assuming that the particles are uniformly
distributed in the layer L. After a few algebraic manipulations, notably a change of variable δ = xi − xj , one obtains

CPP (r) = φLθpK(r) + θ2p

∫
dVδ CLL(δ)K̃(δ + r) (SI-11)

where the covariogram of the loading region appears as

CLL(δ) =
1

V

∫
dVx IL(x + δ)IL(x) (SI-12)

The quantity that appears in the general expression for the C̄ρ (Eq. 16 of the main text) is not strictly CPP , but the
centred covariogram C̄PP , which is obtained as

C̄PP = CPP − φ2P (SI-13)

From Eq. (SI-5), the quantity φ2P can conveniently be written as

φ2P = θ2pφ
2
L

∫
dVxK̃(x) (SI-14)

because it results from the definition of K̃ that 〈Vg〉2 is equal to the integral of K̃. The final expression we obtain for
the centred covariogram is

C̄PP (r) = φLθpK(r) + θ2p

∫
dVδ C̄LL(δ)K̃(δ + r) (SI-15)

where C̄LL is the centred covariogram of the loading region.
Another quantity relevant to scattering is the cross-covariogram

CSP (r) =
1

V

∫
dVx IS(x)IP (x + r) =

1

V

∑
i

∫
dVx IS(x + r)pi(x + r− xi) (SI-16)

Evaluating the sum as previously, that is replacing∑
i

→ θp

∫
V

dVxi
IL(xi) (SI-17)
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one finds

CSM (r) = θp

∫
dVδ CSL(δ)〈p(r + δ)〉 (SI-18)

where 〈p()〉 is the average value of the particle profile p(), and

CSL(δ) =
1

V

∫
dVx IS(x + δ)IL(x) (SI-19)

is the cross-covariogram of phases S and L. The centred cross-covariogram is eventually obtained as

C̄SP (r) = θp

∫
dVδ C̄SL(δ)〈p(r + δ)〉 (SI-20)

which is the expression needed to evaluate the scattered intensity.

III. ASYMPTOTIC EXPRESSIONS OF THE COVARIANCES CSS(r), CLL(r) AND CSL(r) IN FIG. 4

A. Solid-solid covariance CSS(r)

The covariance CSS(r) is the probability that two points at distance r from one another both belong to the solid
phase of the porous material. Let the two points be called A and B. In the approximation of Fig. 4 of the main text
(flat surface and infinite solid), the covariance can be decomposed as

CSS(r) =

∫ ∞
0

aSdz P (B ∈ S|A at depth z) (SI-21)

where aSdz is the probability for a randomly chosen point to be in the solid at distance z from the surface, and
P (B ∈ S|A at depth z) is the conditional probability for point B to be in the solid, given that point A is at depth z.
The latter conditional probability is

P (B ∈ S|A at depth z) =

{
(r + z)/(2r) for z < r
1 for z ≥ r (SI-22)

The case for z < r results from evaluating the fraction of the sphere with radius r and centre at depth z that is in
the solid.

The result can be written formally as

CSS(r) =

∫ ∞
0

aSdz +
aS
2r

∫ r

0

dz (z − r)

= φS −
aS
4
r (SI-23)

where the second equality results from equating
∫∞
0
aSdz = φS .

B. Covariance CSL(r) between the solid and the layer

The decomposition is the same as for CSS , namely

CSL(r) =

∫ ∞
0

aSdz P (B ∈ L|A at depth z) (SI-24)

We use the notation g = d− t/2 for the gap between the solid and the layer (see Fig. 4 of the main text).
If r < g, there is no way for two points at distance r from one another to be in S and in L, respectively. The

probability is therefore

P (B ∈ L|A at depth z) = 0 (SI-25)

and CSL(r) = 0 for r < g.
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If g ≤ r < g + t, two cases are to be considered, depending on the position z of point A, namely

P (B ∈ L|A at depth z) =

{
(r − g − z)/(2r) for z < r − g
0 for z ≥ r − g (SI-26)

The case for z < r−g results from considering a sphere with radius r and centre at depth z in the solid, and evaluating
the fraction of its surface that intersects the layer. As a consequence

CSL(r) =

∫ r−g

0

aSdz
r − g − z

2r
=
aS
4r

(r − g)2 (SI-27)

If r > g + t, three cases have to be considered

P (B ∈ L|A at depth z) =

 t/(2r) for z < r − g − t
(r − g − z)/(2r) for r − g − t ≤ r < r − g
0 for r − g ≤ z

(SI-28)

These values too result from considering a sphere with radius r and centre at depth z in the solid, and evaluating the
fraction of its surface that intersects the layer. In the first case, the top of sphere is above the top of the layer; in the
second case, the top of the sphere is inside the layer; in the last case, the top of the sphere does not touch the layer.
As a consequence

CSL(r) =

∫ r−g−t

0

aSdz
t

2r
+

∫ r−g

r−g−t
aSdz

r − g − z
2r

=
aS
4

t

r
(r − d) (SI-29)

C. Layer-layer covariance CLL(r)

To calculate CLL we consider point A to be in L (as opposed to in S for CSS and CSL), and z is therefore the
distance to the surface of the layer.

If r < t/2, the conditional probability is

P (B ∈ L|A at depth z) =

{
(r + z)/(2r) for z < r
1 for z ≥ r (SI-30)

In consequence

1

2
CLL(r) =

∫ r

0

aSdz
r + z

2r
+

∫ t/2

r

aSdz (SI-31)

where the factor 1/2 results from the symmetry of the layer, and it accounts for the fact that the integral on z is
carried only on half of its thickness. The result for r ≤ t/2 is eventually

CLL(r) = φL −
aS
2
r (SI-32)

where have have written φL = aSt.
For t/2 ≤ r < t, the conditional probability is

P (B ∈ L|A at depth z) =

{
(r + z)/(2r) for z < t− r
t/(2r) for z ≥ t− r (SI-33)

The result for t/2 < r ≤ t happens to be the same as for r ≤ t/2, namely

CLL(r) = φL −
aS
2
r (SI-34)

For t ≤ r, the conditional probability is

P (B ∈ L|A at depth z) = t/(2r) (SI-35)

So that the covariance is simply

CLL(r) = φL
t

2r
(SI-36)

which has the typical 1/r behaviour of surface correlation functions.
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FIG. SI-3. Realizations (a1 to d1) and calculated SAXS patterns (a2 to d2) of GRF model of supported nanoparticles for
increasingly large pores. The particle diameter is set to 30 Å and the pore chord length increases from lP = 3 × 30 Å (a),
lP = 4 × 30 Å (b), lP = 5 × 30 Å (c) and lP = 6 × 30 Å (d). The various contributions of the SAXS patterns are the
empty support (black), the particles (green), the support contribution deformed by contrast matching effects (blue), and total
scattering (red). Figures a3 to d3, and a4 and d4, show the patterns calculated in the small-pore and large-pore approximations,
respectively (solid red line). The dotted red line is the corresponding exact patterns (i.e. same as in a2 to d2). The grey shade
highlight the cases where the approximations does not hold.
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