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1 Effect of noise on the ellipsoid estimation

To quantify the effect of noise on the semiaxes estimated by our approach, we
carried out a noise study, where additive Gaussian noise was added at increas-
ing standard deviations to the PDB-generated curves, previously normalized to
I(0) = 0. The proposed algorithm was applied to these noisy curves, using
polynomial orders of both 4 and 6, and repeated over 100 noise realizations for
each noise level. For each noise level, the mean and standard. deviation over the
100 realizations of the estimated semiaxes values were computed. These results
are shown in the following figure, where for each PDB file and each candidate
(oblate or prolate), the mean semiaxis estimates are shown as a function of noise
standard deviation, together with a shaded region representing +/- 1 standard
deviation:

1



Figure S1: Effect of noise on the proposed algorithm. Each row shows the mean
and standard deviation of the oblate axial estimates (first column), prolate
axial estimates (second column) and RG (last column), as a function of the
noise standard deviation, for each PDB case considered in the manuscript.

For the semiaxes estimated using the 4th order fit (orange curves), one can
observe a clear correlation with the noise level: as noise increases, the estimated
anisotropy seems to increase (semiaxes means separate from each other). The
RG estimate, however, stays close to constant and only its standard deviation
seems affected by the noise increase. For the semiaxes estimated using the 6th
order fit (blue curves), we see again a an increase in apparent anisotropy, both
as a function of noise and with respect to the 4th order estimates, at least at
low noise levels, when the RG estimate remains close to constant. These high
order estimates also present a bias to overestimate RG as a function of noise
level σ.

We would however like to point out that the impact of noise on the estimated
anisotropy is a general feature of the nature of the data and not a reflection
of any particular algorithm. Added noise will inevitably increase the apparent
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anisotropy of the scattering object. Given that p(r) can be thought of as essen-
tially the spectrum of the data - and Dmax a measure of the bandwidth of the
data - any addition of noise will increase the apparent bandwidth (and apparent
Dmax). For a fixed RG (RG is highly robust to added noise, as shown in Figure
S1) the result is an increase in the apparent anisotropy.
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2 Effect of q RG ranges on the estimation

To validate the choice of the q RG fitting range, we performed a series of Monte
Carlo simulations analyzing the performance of the algorithm as a function of
[q RG]min and [q RG]max across noise levels and across the 4 PDB-generated
curves used in the previous section. The range q RG was sampled from 0 to 4 in
steps of 0.05, while the noise standard deviation was sampled in 5 uniform steps
from 0.005 to 0.02. For each possible combination of [q RG]min and [q RG]max

within the q RG range, the proposed algorithm was used to estimate the ellip-
soid parameters of the 4 aforementioned I(q) curves, repeating that estimation
20 times for different noise realizations at each noise level, and across all noise
levels, leading to 400 estimations per each q RG and over a million estimations
total.

For each estimation, we recorded if the algorithm provided a valid result, where
an experiment was considered to yield valid information if the recovered param-
eters where real numbers, and invalid if the estimated parameters were complex
numbers. Additionally, for each valid result, we analyzed how much the esti-
mated semiaxes differed from the correct semiaxes, where we took the correct
semiaxes to be the ones estimated by BODIES using the noiseless curves. Specif-
ically, we measured the norm of the difference between each experiment and the
BODIES result, divided over the norm of the BODIES result, yielding a relative
measure of the estimation error (as opposed to an absolute one). The results of
these experiments can be seen in Figure S2:
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Figure S2: a) Fraction of valid estimations as a function of [q RG]min and
[q RG]max. b) Average relative error over valid estimations as a function of
[q RG]min and [q RG]max

As can be observed in Figure S2.a, ranges in the region [0, 1] ≤ q RG ≤ [2, 3.5]
provide the highest rate of valid results for the proposed algorithm, while, in
Figure S2.b, the narrower band [0, 2] ≤ q RG ≤ [2.5, 3] provides the best agree-
ment with BODIES, with an average relative error around 10%. As expected
from the use of a Taylor approximation, the estimation in general improves when
the lower bound tends to 0, for any given upper bound. From the plot in Figure
S2.a, we can observe that the upper bound q RG < 3 seems to be the most
adequate to carry out the estimation. The fact that the estimation gets worse
for both larger and smaller upper bounds seems to be in direct relation to the
high order terms of the Taylor series: the required higher order terms might not
be strong enough at lower upper bounds, but additional terms might show up
for larger upper bounds, both phenomena impacting the successful estimation
of the approximation parameters.

While the choice of 0 as the lower bound of the qRg range seems natural both
from the theorerical perspective and from the results in Figure S2, we show next
that this is not always the best approach for experimental SAXS curves. In Fig-
ure S3 we show the amount of valid estimations for the experimental datasets
studied in the manuscript, as a function of the chosen qRg range. Each experi-
ment can either yield a valid estimate for both oblate and prolate cases, only for
prolate or an invalid estimate for both. For each qRg range, we indicate these 3
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possible outcomes by a different color. The results of S3 show that in some cases,
extending the lower bound of qRg to 0 might result in a worse performance of
the estimation. We believe this to be due the fact that the least squares estima-
tor used is the optimal one under additive white Gaussian noise (AWGN), which
might not be the correct choice of noise model for SAXS curves. Behaviors that
deviate from this AWGN model, like heteroskedasticity or multiplicativity, have
been indeed proposed for SAXS experiments (e.g. Minh and Makowski, 2013
and Onuk et al, 2015). The fact the the method performs as expected in the
results from Figure S2 using additive Gaussian noise, but doesn’t perform as
well for the experimental datasets seems to hint that a more noise-informed es-
timation could improve the reported estimation of the anisotropy parameters of
molecules from their solution-SAXS curves. Given these results, we have chosen
the range 1 ≤ qRg ≤ 3 to carry out the estimation for all SAXS curves in the
manuscript, as it seems to be a range that presents a good performance for both
computed and experimentally measured curves.

Figure S3: Valid estimations as a function of [q RG]min and [q RG]max for
the six datasets studied in the main manuscript. Color indicates no valid
estimation (blue), only prolate valid estimation (green) and both prolate and
oblate valid estimations (yellow).
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