

Volume 52 (2019)

Supporting information for article:

Wide angle x-ray scattering combined with pair distribution function analysis of pyrolyzed wood

Agnieszka Poulain, Capucine Dupont, Pablo Martinez, Chamseddine Guizani and Jakub Drnec

		Standard	Unit wt% dry basis wt% dry basis	Beech	Orchard
		Stanuaru	Unit	Deech	apricot
		CEN/TS wt% dry			
	Ash	14775	basis	0.5	3.8
	7 1011	11775	ousis	0.5	5.0
Elemental		CEN/TS			
analysis	С	15104		49.1	48.3
		CEN/TS			
	Н	15104		5.7	6.3
		By			
	0	difference	44 wt% dry basis 0.1 53	44.5	40.3
		CEN/TS			
	Ν	15104	basis	0.15	1.25
	Al	EN 15290		53	104
	As	EN 15297		nm (*)	0.3
		NF EN ISO			
	В	11885		nm	14
	Са	EN 15290		1243	10927
	Cd	EN 15297		nm	<0.4
	Cr	EN 15297		nm	1
	Cl	EN 15289	mg.kg dry biomass ⁻¹	81	326
	Cu	EN 15297		nm	3
	Fe	EN 15290		50	88
	Hg	EN 15297		nm	< 0.05
	К	EN 15290		862	7254
	Mg	EN 15290		279	1374
	Mn	EN 15297		193	20
	Na	EN 15290		24	41
	Р	EN 15290		61	1161

Table S1 Main properties of raw samples – full list including standards and elements with low concentration.

	Pb	EN 15297		nm	<0.5
	S	EN 15289		450	819
		Internal			
	Si	method		249	990
	Ti	EN 15290		6	9
	Zn	EN 15297		nm	17
Macromolecular	Extractives	Internal			20.9
constituents		method		3.0 (**)	20.9
analysis	Cellulose	Internal			
		method	wt% dry	43.3 (**)	27.0
	Lignin	TAPPI	basis		
		standard	(normalized)		
		T222 om-			
		83		22.0 (**)	27.9
	Hemicellulose	Internal			
		method		31.0 (**)	20.5
	Glucan	ТАРРІ	wt% dry	nm	26.9
	Mannan	standard	basis	nm	1.2
	Xylan	- ASTM		nm	11.8
	Galactan	E1758		nm	2.6
	Arabinan	standard		nm	3.4
	Acetates	method		20(**)	20.0
	Acciaics			5.0 (***)	20.9

Table S2 Overview of the microstructural parameters obtained after manual fitting of BFH and ASH series in CarbX. Layer structure: L_a – average graphene layer extent, $\langle l \rangle$ - average chord length, κ_a - polydispersity of chord length l, l_{cc} – average C-C bond length, σ_l – standard deviation of the first neighbor distribution; Layer stacking: L_c – average stack height, κ_c – polydispersity of stack height, a_3 – average interlayer spacing, $a_{3,min}$ – minimum of interlayer spacing, σ_3 – standard deviation of interlayer spacing, $\langle N \rangle$ - number of graphene layers per stack, η – homogeneity of the stack, q – parameter of preferred orientation, Δ_{an} – parameter of anisotropy of the atomic form factor of carbon.

	BFH800	BFH1000	BFH1200		ASH1000	ASH1200	ASH1400	
L _a [Å]	10.3	17.2	17.9	1	24.9	27.2	47.3	1
<l> [Å]</l>	7.7	13.8	15.4	1	22.9	25.1	44.9	1
Ка	0.33	0.25	0.17	Ļ	0.09	0.08	0.05	Ļ
l _{cc} [Å]	1.40	1.40	1.40	-	1.40	1.40	1.40	-
σι	0.12	0.12	0.12	-	0.07	0.04	0.12	?
L_c [Å]	12.6	12.6	12.3	Ļ	9.6	11.7	13.1	1
κ_c	0.25	0.28	0.26	?	0.10	0.09	0.41	?
a3 [Å]	3.61	3.52	3.54	?	3.60	3.56	3.56	\downarrow
a3,min				?				?
[Å]	2.83	2.99	2.76		3.07	2.86	3.00	
σ_3	0.50	0.47	0.47	Ļ	0.57	0.54	0.59	?
< <i>N</i> >	2.8	2.8	2.7	Ļ	2.92	3.0	2.6	?
η	1.00	1.00	1.00	-	1.00	0.99	1.00	?
<i>q</i>	0.00	0.00	0.00	-	0.00	0.00	0.03	↑
Δ_{an}	61.5	52.5	48.0	Ļ	51	26.0	31.0	?

	BFH800	BFH1000	BFH1200	BFH1400	direction of
				refined as a combination of the	changes
				three components: calcite,	
				graphene and fairchildite	
- [Å]	7.22	7.04	7.09	7.00	1
	1.22	7.04	7.08	7.08	↓ ↓
$U_{33}[{ m \AA}^2]$	0.09±0.15	0.21±0.25	0.25±0.22	0.23±0.22	↑ (
				60% (calcite)	
				25% (graphene)	
				15% (fairchildite)	
R_w [%]	24.8	24.5	28.5	37.0	↑ (
sp	7.2±1.5	10.3±2.6	11.5±2.4	13.3±3.3	1
diameter					
[Å]					
	ASH800	ASH1000	ASH1200	ASH1400	
	ASH800*	ASH1000*	ASH1200*		
<i>c</i> [Å]	7.20	7.20	7.12	7.12	Ļ
U_{33} [Å ²]	0.21±0.26	0.26±0.22	0.36±0.20	0.57±0.20	↑ (
	7.7%**	10.8%**	5.4%**		
R_w [%]	41.8	41.7	34.4	34.4	Ļ
	38.5***	36.2***	33.5***		
sp	9.1±2.0	13.2±3.1	17.5±3.7	22.6±3.6	<u>↑</u>
diameter					
[Å]					

* Ca(OH)2 added in the refinement; ** concentration of Ca(OH)2; *** agreement factor after addition of Ca(OH)₂

Figure S1 Modeling of the BFH1400 beech with calcite (CaCO₃, blue curve), graphite (final c=7.07 Å, black curve) and fairchildite (K₂Ca(CO₃)₂), green curve). Red curve represents the calculated sum of the three components. Offset introduced for sake of clarity.

Figure S2 Modeling of the RA PDF with cellulose only and as a combination of cellulose and $Ca(OH)_2$. Blue circles – experimental data, red line – calculated, green line– difference. Offset introduced for sake of clarity.

Figure S3 Final modeling of the experimental PDF of the BFH1400 using calcite, fairchildite and modified graphite structures. Color code is the same as in Figure S2. Little input from fairchildite comes from overestimation of calcite concentration, as both minerals have very similar composition. Calculated concentrations are 60 % (CaCO₃,), 25 % (K₂Ca(CO₃)₂) and 15 % (graphite). Offset introduced for sake of clarity.

Figure S4 Long range order in the experimental PDF of BFH1400 coming from the crystallinity of calcite; blue circles – experimental, red line – calculated, green line – difference. Although the three phases contribute to the pattern, the main component is CaCO₃.