

JOURNAL OF
 APPLIED CRYSTALLOGRAPHY

Volume 51 (2018)
Supporting information for article:

Intercalation of lithium into disordered graphite in a working battery
Rune E. Johnsen, Poul Norby and Matteo Leoni

Figure S1 Low-angle part of the XRPD patterns of the graphitic electrode as a function of discharging time.

Fig. S1 shows the evolution of a diffraction peak at a position corresponding to the position of the 001 reflection of a LiC_{12} phase ($c \approx 7.0 \AA$) as a function of time during the first galvanostatic discharging process.
Fig. S2 shows the initial changes in the cell potential and d-spacing values of the diffraction peak corresponding to the 002 diffraction peak of graphite 2 H (and 003 diffraction peak of graphite 3R) as a function of discharging time using an ECC-Opto-Std battery cell from EL-CELL GmbH at our in-house Rigaku SmartLab equipped with a rotating Cu anode. The ECC-Opto-Std battery was discharged slowly with a current of $100 \mu \mathrm{~A}$.

Figure S2 Changes in the cell potential and the ' d-spacing' of the ' $002_{2 \mathrm{H}}$ ' diffraction peak during a galvanostatic discharge.

Graphite: 3-layer stacking of identical 2-layer cells (AB)

'Stage III': 3-layer stacking of three different cells ($A \alpha A B, A \alpha A C$ and $B A \alpha A$)

Stage II: 3-layer stacking of two different cells (A and A α)

Figure S3 A sketch of the layers/cells for the different compounds.

Figure S4 Changes in the 'd spacing' and FWHM of the ' $002_{2 H}$ ' diffraction peak during a galvanostatic discharge. The ripples in the ' d spacing' are due to instability in the power supply at MAX-lab.

Table S1 Layer translation vectors and stacking probabilities of the DIFFaX+ refinement of a 'stage III' compound ($\mathrm{t}=1205 \mathrm{~min}$)

Layer transitions	x / a	y / b	z / c	Probabilities \dagger
$1-1$	0	0	1	0
$1-2$	0	0	1	1
$1-3$	0	0	1	0
$2-1$	0	0	1	$0.41(10)$
$2-2$	$2 / 3$	$1 / 3$	1	$0.33(15)$
$2-3$	$1 / 3$	$2 / 3$	1	$0.26(15)$
$3-1$	0	0	1	0
$3-2$	$1 / 3$	$2 / 3$	1	$0.81(4)$
$3-3$	$1 / 3$	$2 / 3$	1	$0.19(4)$

\dagger The standard deviations are estimated manually

