

Volume 51 (2018)

Supporting information for article:

Crystal growth and characterization of second-and third-order nonlinear optical chalcone derivative: (2E)-3-(5-Bromo-2-thienyl)-1-(4-nitrophenyl)-prop-2-en-1-one

Parutagouda Shankaragouda Patil, Shivaraj R. Maidur, Mohd Shkir, S. AlFaify, V. Ganesh, Katturi Naga Krishnakanth and S. Venugopal Rao

Supplementary information

Crystal growth and characterization of second-and third-order nonlinear optical chalcone derivative: (2E)-3-(5-Bromo-2-thienyl)-1-(4-nitrophenyl)-prop-2-en-1-one

Parutagouda Shankaragouda Patil^a, Shivaraj R. Maidur^a, Mohd Shkir^{*b}, S. AlFaify^b, V. Ganesh^b, Katturi Naga Krishnakanth^c, S. Venugopal Rao^c

^a Department of Engineering Physics, K. L. E. Institute of Technology, Opposite Airport, Gokul, Hubballi 580030, India

^bAdvanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box. 9004, Abha 61413, Saudi Arabia ^cAdvanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, India

Z-scan method:

Single beam Z-scan readily gives the magnitude and sign of the nonlinearity (Sheik-Bahae *et al.*, 1990). The experimental setup used to measure the NLA and NLR index of **5B2SNC** is identical to that described in our previous studies (Patil *et al.*, 2016). The experiment was conducted with sample concentration of 1 mM using femtosecond (fs) pulses emitted from Ti: sapphire laser with a wavelength 800 nm, a pulse duration of 120 fs, and a repetition rate of 80 MHz. It consists of two parts: an open aperture (OA) part, where the total sample transmitted intensity was measured without the aperture as a function of sample position, and a closed aperture (CA) part, where an aperture was placed in front of the detector and only the fraction of intensity passing through the aperture was recorded as a function of the sample position on the Z-axis. CA scans were performed at intensities where the contribution from the higher order nonlinear effects is negligible (the value of $\Delta \phi$ estimated in all the cases was $<\pi$). The experiments were repeated more than once and the best data were used for obtaining the NLO coefficients from the best fits.

Fig. 2S. TGA/DTA curve of 5B2SNC.

Table 1S

Frontier molecular orbital (FMO) energies and their differences at B3LYP/6-31G* level of theory.

Orbitals	Energy		
	a.u.	eV	
Еномо	-0.235	-6.394	
E _{HOMO-1}	-0.265	-7.211	
Elumo	-0.110	-2.993	
E_{LUMO+1}	-0.084	-2.285	
$\Delta E_{HOMO-LUMO}$	0.125	3.401	
$\Delta E_{HOMO-1-LUMO+1}$	0.180	4.898	

Table 2S

The values of α , β and μ along with their individual tensor components computed at B3LYP/6-31G* level of theory. (For α , 1 a. u. = 0.1482×10⁻²⁴ esu and for β , 1 a. u. = 0.008629×10⁻³⁰ esu).

Polarizability and dipole moment			Hyperpolarizability		
Components	a. u.	esu (×10 ⁻²⁴)	Components	a. u.	esu (×10 ⁻³⁰)
α_{xx}	393.96	58.38	β_{xxx}	-5902.44	-50.93
α_{xy}	-2.78	-0.41	β_{xxy}	935.97	8.08
α_{yy}	199.81	29.61	β_{xyy}	-167.66	-1.45
α_{xz}	7.13	1.06	eta_{yyy}	79.40	0.69
α_{yz}	-5.17	-0.77	β_{xxz}	40.55	0.35
α_{zz}	71.77	10.64	β_{xyz}	-7.44	-0.06
$lpha_0$	221.85	32.88	eta_{yyz}	3.71	0.03
Δα	281.30	41.69	β_{xzz}	10.41	0.09
μ_x	-5.756D		eta_{yzz}	-16.40	-0.14
μ_y	1.456D		eta_{zzz}	-3.63	-0.03
μ_z	0.291D		eta_{o}	3684.99	31.8
μ_{tot}	5.944D		eta_{tot}	6141.66	53

Polarizabi	ility and dipo	ole moment		Hyperpolarizability	
Components	а. и.	$esu (\times 10^{-24})$	Components	а. и.	$esu (\times 10^{-30})$
α_{xx}	358.14	53.08	β_{xxx}	-4646.97	-40.1
α_{xy}	-1.06	-0.16	β_{xxy}	865.57	7.47
α_{yy}	190.85	28.28	β_{xyy}	-161.70	-1.39
α_{xz}	12.06	1.79	eta_{yyy}	94.62	0.82
α_{yz}	-6.54	-0.97	β_{xxz}	45.65	0.39
$lpha_{zz}$	76.67	11.36	β_{xyz}	-3.13	-0.03
α_0	208.55	30.91	β_{yyz}	4.37	0.04
$\Delta \alpha$	245.19	36.34	β_{xzz}	8.84	0.08
μ_x	-5.072D		eta_{yzz}	-11.30	-0.10
μ_y	1.087D		eta_{zzz}	-6.37	-0.05
μ_z	0.215D		eta_o	2367.45	20.43
μ_{tot}	5.192D		β_{tot}	3945.75	34.05

Table 1R The values of α , β and μ along with their individual tensor components computed at HF/6-31G* level of theory.

Table 2R The values of α , β and μ along with their individual tensor components computed at CAM-B3LYP/6-31G* level of theory.

Polarizabi	ility and dipo	ole moment		Hyperpolarizability	
Components	а. и.	$esu (\times 10^{-24})$	Components	а. и.	$esu (\times 10^{-30})$
α_{xx}	348.69	51.68	β_{xxx}	-3639.62	-31.41
α_{xy}	-1.45	-0.21	β_{xxy}	736.25	6.35
$lpha_{yy}$	193.74	28.71	β_{xyy}	-113.48	-0.98
α_{xz}	7.34	1.09	$oldsymbol{eta}_{yyy}$	83.23	0.72
α_{yz}	-4.91	-0.73	β_{xxz}	25.41	0.22
α_{zz}	71.28	10.56	β_{xyz}	-5.60	-0.05
α_0	204.57	30.32	eta_{yyz}	2.13	0.02
Δα	241.13	35.74	β_{xzz}	9.87	0.09
μ_x	-5.174D		eta_{yzz}	-15.73	-0.14
μ_y	1.078D		eta_{zzz}	-4.17	-0.04
μ_z	0.138D		eta_{0}	1811.34	15.63
μ_{tot}	5.287D		eta_{tot}	3018.90	26.05

Polarizabi	ility and dipo	ole moment		Hyperpolarizability	
Components	а. и.	$esu (\times 10^{-24})$	Components	а. и.	$esu (\times 10^{-30})$
α_{xx}	346.76	51.39	β_{xxx}	-3366.90	-29.05
α_{xy}	-1.16	-0.17	β_{xxy}	703.41	6.07
α_{yy}	193.16	28.63	β_{xyy}	-120.63	-1.04
α_{xz}	11.36	1.68	eta_{yyy}	82.53	0.71
α_{yz}	-5.89	-0.87	β_{xxz}	22.65	0.2
α_{zz}	75.52	11.19	β_{xyz}	-1.20	-0.01
α_0	205.15	30.4	eta_{yyz}	4.99	0.04
$\Delta \alpha$	236.41	35.04	β_{xzz}	12.70	0.11
μ_x	-5.184D		eta_{yzz}	-13.07	-0.11
μ_y	1.135D		eta_{zzz}	-4.53	-0.04
μ_z	0.220D		eta_{o}	1671.35	14.42
μ_{tot}	5.311D		β_{tot}	2785.58	24.04

Table 3R The values of α , β and μ along with their individual tensor components computed at wb97XD/6-31G* level of theory.

Figure 3S Comparison of first hyperpolarizability calculated at different levels of theory with urea molecule (urea value at B3LYP/6-31G*)

