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Supporting Figures  

 

Figure S1 EBSD map of the magnesium single crystal cut on section B. (a) Map with colors chosen 

according to those used for the different twin types in Figure1a. (b) Disorientation histogram, with in 

(c) the rotation axes corresponding to the three peaks of the histogram plotted in the fundamental 

sector of the hexagonal lattice.  
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Figure S2 Pole figures of the EBSD map shown in Figure S1 indicating some important 

crystallographic planes and directions related to the (86°, a) extension twin. The planes and directions 

marked by the rectangles, triangles and circles are interpreted exactly as in Figure2. 

 

 

Figure S3 Pole figures of the EBSD map shown in Figure S1 confirming the unconventional 

character of the ∼(58°, a+2b) green twins already shown in Figure3. Two variants of ∼ (58°, a+2b) 

twins are visible in this map (light and dark green): the dark green twins exhibit two different habit 

planes, and the light green twin only has one habit plane. These three habit planes, noted HP1, HP2 

and HP3, are perfectly indexed as {212}𝑝𝑝 // {012}𝑔𝑔𝑔𝑔 planes. It was also checked that all these twins 

share a common 〈201〉 direction, noted DIR1, DIR2 and DIR3, that belongs to the {212} plane HP1, 

HP2 and HP3, respectively. 
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Figure S4 Atomic model of the (212)p →(012)gr transformation. (a) Plane (212)p of the parent 

crystal drawn in the reference frame. (b) The same plane viewed edge-on; it is constituted of two 

parallel layers of atoms, one with atoms of coordinates [u, v, w] positioned at the level l = 2u+v+2w = 

0 (in blue), and the other one with atoms at the level l = 2u+v+2w = 1/3 (in light grey). The 

displacements of the atoms of the layer l = 1/3 down to the lower layer l = 0 are shown by the green 

curved arrows. (c) Plane (012)gr of the green twin constituted of only one layer l = v+2w = 0 (in red), 

obtained after the atomic displacements and lattice distortion. 
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Supporting Calculations  

 

S1. Reminder on some important crystallographic matrices of phase transformation 

S1.1. Definition of the distortion, orientation and correspondence matrices 

Deformation twinning is a lattice transformation under stress or strain from a parent crystal (p) to the 

twinned crystal (t); this distortion restores the lattice in a new orientation. Mathematically, it can be 

defined by a distortion matrix 𝐃𝐃𝑝𝑝→𝑡𝑡. Any direction u is transformed after distortion into a new 

direction 𝒖𝒖′ = 𝐃𝐃𝑝𝑝→𝑡𝑡𝒖𝒖. A plane g, considered as a vector of the reciprocal space, is transformed after 

distortion into a new plane 𝒈𝒈′ = �𝐃𝐃𝑝𝑝→𝑡𝑡�
∗
𝒈𝒈 with �𝐃𝐃𝑝𝑝→𝑡𝑡�

∗
= �𝐃𝐃𝑝𝑝→𝑡𝑡�

−T
 where the symbol –T means 

the inverse of the transpose. 

It is often necessary for the calculation to switch from the crystallographic basis to an orthonormal 

basis linked to this basis. In the case of an hexagonal phase, we call 𝐁𝐁ℎ𝑒𝑒𝑒𝑒 = (𝒂𝒂,𝒃𝒃, 𝒄𝒄) the usual 

hexagonal basis, and 𝐁𝐁𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜 = (𝒙𝒙,𝒚𝒚, 𝒛𝒛) the orthonormal basis linked to 𝐁𝐁ℎ𝑒𝑒𝑒𝑒 by the coordinate 

transformation matrix 𝐇𝐇ℎ𝑒𝑒𝑒𝑒: 

𝐇𝐇ℎ𝑒𝑒𝑒𝑒 =  [𝐁𝐁𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒] = �
1 −1 2⁄ 0
0 √3 2⁄ 0
0 0 𝛾𝛾

� 
S1    

where 𝛾𝛾 is the c/a packing ratio of the hexagonal phase. The matrix 𝐇𝐇ℎ𝑒𝑒𝑒𝑒 is commonly called 

structure tensor in crystallography. It can be used to express the directions into the orthonormal basis 

𝐁𝐁𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜. For planes, it is 𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗  that should be used. We note O, the “zero” position that will be left 

invariant by the distortion and we note X, Y and Z the atomic positions defined by the vectors OX = a 

= [100]hex, OY = a + 2b = [120]hex and OZ = c = [001]hex. It can be checked with the matrix 𝐇𝐇ℎ𝑒𝑒𝑒𝑒 that 

OX = [100]ortho, OY = [0 √3 0]ortho and OZ = [0 0 γ]ortho. 

The vectors of the initial parent basis are transformed by the distortion into new vectors: 𝐚𝐚𝑝𝑝 → 𝐚𝐚′𝑝𝑝,   

𝐛𝐛𝑝𝑝 → 𝐛𝐛′𝑝𝑝 and 𝐜𝐜𝑝𝑝 → 𝐜𝐜′𝑝𝑝. The distortion matrix expressed in the hexagonal basis 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 is the matrix 

formed by the images 𝐚𝐚′𝑝𝑝,  𝐛𝐛′𝑝𝑝 and  𝐜𝐜′𝑝𝑝 expressed in 𝐁𝐁ℎ𝑒𝑒𝑒𝑒, i.e.  𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
′𝑝𝑝 � = 𝐁𝐁ℎ𝑒𝑒𝑒𝑒

′𝑝𝑝  with 

𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝 = (𝐚𝐚𝑝𝑝,𝐛𝐛𝑝𝑝, 𝐜𝐜𝑝𝑝) and 𝐁𝐁ℎ𝑒𝑒𝑒𝑒

′𝑝𝑝 = (𝐚𝐚′𝑝𝑝,𝐛𝐛′𝑝𝑝, 𝐜𝐜′𝑝𝑝). In simple words, the distortion matrix is expressed by 

writing in column the coordinates of 𝐚𝐚′𝑝𝑝,  𝐛𝐛′𝑝𝑝 and  𝐜𝐜′𝑝𝑝 in the basis 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝 . The crystallographic studies 

on displacive phase transformations and mechanical twinning often consist in finding the distortion 

matrices close to the identity matrix in order to minimize the atomic displacements.  

If the distortion matrix is known in the basis 𝐁𝐁𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜, and noted 𝐃𝐃𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜
𝑝𝑝→𝑡𝑡 , a formula of coordinate 

transformation can be used to express it in the basis  𝐁𝐁ℎ𝑒𝑒𝑒𝑒 ; it is:  
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𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 =  𝐇𝐇ℎ𝑒𝑒𝑒𝑒

−1  𝐃𝐃𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜
𝑝𝑝→𝑡𝑡  𝐇𝐇ℎ𝑒𝑒𝑒𝑒    S2    

with 𝐇𝐇ℎ𝑒𝑒𝑒𝑒  given by equation S1. Inversely, if the distortion matrix is found in 𝐁𝐁ℎ𝑒𝑒𝑒𝑒 and it can be 

written in 𝐁𝐁𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜 by the inverse formula: 

𝐃𝐃𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜
𝑝𝑝→𝑡𝑡 =  𝐇𝐇ℎ𝑒𝑒𝑒𝑒 𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑡𝑡  𝐇𝐇ℎ𝑒𝑒𝑒𝑒
−1     S3    

The misorientation matrix is defined by the coordinate transformation matrix 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡. This matrix 

allows the change of the coordinates of a fixed vector between the parent and twin bases. It is given 

by the vectors forming the basis of the twin 𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 = (𝐚𝐚𝑡𝑡,𝐛𝐛𝑡𝑡 , 𝐜𝐜𝑡𝑡) expressed in the parent hexagonal 

basis, i.e. 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 �. Its reverse is just 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 �. 

The orientation of the twinned crystal is defined by the matrix 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 , but other equivalent matrices 

could be chosen. The equivalent matrices are obtained by multiplying 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 by the matrices 𝒈𝒈𝒊𝒊 of 

internal symmetries of the hexagonal phase, i.e. the matrices forming the point group of the hcp phase 

𝔾𝔾ℎ𝑐𝑐𝑝𝑝 .  

   �𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡� = �𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑡𝑡𝒈𝒈𝒊𝒊 , 𝒈𝒈𝒊𝒊  ∈ 𝔾𝔾ℎ𝑐𝑐𝑝𝑝 �     S4    

The matrix 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 is a coordinate transformation matrix between two hexagonal bases; it is thus a 

rotation matrix. The rotation angle of a matrix  𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 is given by its trace and the rotation axis is the 

eigenvector associated with the unit eigenvalue. However, one must keep in mind that 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 is 

expressed in a non-orthonormal basis, which implies that some usual equations related to rotations do 

not hold. For example, the inverse of a rotation matrix equals its transposes only in orthonormal basis. 

Using 𝐓𝐓𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜
𝑝𝑝→𝑡𝑡 = 𝐇𝐇ℎ𝑒𝑒𝑒𝑒𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑡𝑡(𝐇𝐇ℎ𝑒𝑒𝑒𝑒)−1 in the calculations allow avoiding possible errors. 

In the set of equivalent matrices�𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡�, it is custom to choose the rotation with the lowest angle, 

called “disorientation”. This choice has practical applications, but it remains arbitrary.  

The correspondence matrix 𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 gives the distortion images expressed in the twin basis of the parent 

basis vectors, i.e. 𝐚𝐚′𝑝𝑝,  𝐛𝐛′𝑝𝑝 and  𝐜𝐜′𝑝𝑝. These images are obtained from the misorientation matrix and the 

distortion matrix: �𝐚𝐚′𝑝𝑝,𝐛𝐛′𝑝𝑝, 𝐜𝐜′𝑝𝑝�/𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑡𝑡 = 𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑡𝑡→𝑝𝑝 �𝐚𝐚′𝑝𝑝,𝐛𝐛′𝑝𝑝, 𝐜𝐜′𝑝𝑝�/𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝 = 𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑡𝑡→𝑝𝑝 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
′𝑝𝑝 =   𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑡𝑡→𝑝𝑝 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡. The 

correspondence matrix is thus: 

𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 =  𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑡𝑡→𝑝𝑝 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 S5    

The correspondence matrix is used to calculate in the twin basis the coordinates of the image by the 

distortion of a vector written in the parent basis, i.e. 

𝐱𝐱′/𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑝𝑝 =  𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡  𝐱𝐱/𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝   →   𝐱𝐱′/𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 =  𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 𝐱𝐱/𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝  S6    

S1.2. Construction of the distortion, misorientation and correspondence matrices 

The crystallographic features of a twin model are determined by the choice of a supercell. This 

supercell defines a sub-lattice of the hexagonal lattice; and it is actually this sub-lattice that is linearly 
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distorted by 𝐃𝐃𝑝𝑝→𝑡𝑡; the atoms inside the supercell do not follow the same trajectories as those at the 

corners of the cells; they “shuffle”. The supercell is formed by three crystallographic directions A, B, 

C defining a matrix 

  𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 � = (𝐀𝐀,𝐁𝐁,𝐂𝐂)/𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝  . 

After distortion, the vectors of this basis are transformed into A’, B’, C’ that define a new basis 

expressed in 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝  by the matrix 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝′ =  (𝐀𝐀′,𝐁𝐁′,𝐂𝐂′)/𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝   =  �𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′ �. When the vectors 

are expressed in the 𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡  , it takes the form  𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 =  (𝐀𝐀′,𝐁𝐁′,𝐂𝐂′)/𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑡𝑡 =  �𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 �.  

As 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′  and 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡  express the same vectors, we get 

�𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′ → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 � = 𝐈𝐈 S7    

with I the identity matrix. Building a crystallographic model dedicated to a specific twin consists in 

finding the appropriate vectors A, B, C of the supercell and finding how they are transformed into A’, 

B’, C’. The three important matrices previously defined can be calculated from the supercell. 

The distortion matrix is expressed in 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝  by 

 𝐃𝐃𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝→𝑡𝑡 = �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′ � = �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝 ��𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′ � = �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝 �−1𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′  

As the distortion matrix is an active matrix; writing it in the basis 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝  leads to 

 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 �.𝐃𝐃𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝→𝑡𝑡 . �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 � =  𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝 �−1𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′  �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝 �−1 , i.e. 

𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 = 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝′  �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 �−1 S8    

 

The misorientation matrix is 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 � = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝′ ��𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′ →

𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 ��𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 � , i.e.  

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 = 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝′  �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 �−1 S9    

 

The correspondence matrix is 𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝′ � = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝 ��𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝′ �  , i.e.  

𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 =  𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑡𝑡→𝑝𝑝 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡, as found in equation S5. It can also be decomposed into 

 𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 ��𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒

𝑝𝑝′ � = �𝐁𝐁ℎ𝑒𝑒𝑒𝑒𝑡𝑡 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 ��𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝′ � �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝′ → 𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝′ � . 

As the coordinates of the supercell are not changed by the distortion �𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝′ → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝′ � =

�𝐁𝐁ℎ𝑒𝑒𝑒𝑒
𝑝𝑝 → 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝 � = 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 , and by using S7, we get 

𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝 =  𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡  �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑝𝑝 �−1 S10    

 

As the matrices 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝  and 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔𝑡𝑡  are constituted by the crystallographic directions forming the 

supercell, their values are integers. As the inverse of an integer matrix is a rational matrix, the 

correspondence matrix is a rational matrix. 
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S1.3. Obliquity correction 

It is usual in the crystallographic models of ferroelectrics to introduce an obliquity correction. This is 

a rotation with a small angle (few degrees) that is composed with a stretch distortion matrix in order 

to transform it into a simple shear matrix. An obliquity correction can be introduced to correct a small 

tilt on a plane and/or an small rotation of a direction. Here we need to introduce a general obliquity 

correction function 𝐎𝐎𝐛𝐛𝐎𝐎(𝒈𝒈,  𝒈𝒈′,𝒖𝒖, 𝒖𝒖′). This function gives the rotation matrix noted 𝐎𝐎𝐛𝐛𝐎𝐎 such that 

𝐎𝐎𝐛𝐛𝐎𝐎.𝒈𝒈 =   𝒈𝒈′  and .𝒖𝒖 =  𝒖𝒖′ . Let us consider a direction u and a plane g expressed in the hexagonal 

basis. Expressed in the orthonormal basis 𝐁𝐁𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜 they are 𝒖𝒖𝒐𝒐 = 𝐇𝐇ℎ𝑒𝑒𝑒𝑒𝒖𝒖 and 𝒈𝒈𝒐𝒐 = 𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗ 𝒈𝒈. In this basis 

the plane 𝒈𝒈 has the same coordinates as its normal direction 𝒏𝒏𝒐𝒐. A third direction defined by 𝒍𝒍𝟎𝟎 =

𝒏𝒏𝒐𝒐⋀ 𝒖𝒖𝒐𝒐 allows building another orthonormal basis 𝐁𝐁(𝐠𝐠,𝒖𝒖) = ( 𝒖𝒖𝒐𝒐
‖𝒖𝒖𝒐𝒐‖

, 𝒏𝒏𝒐𝒐
‖𝒏𝒏𝒐𝒐‖

, 𝒍𝒍𝟎𝟎
‖𝒍𝒍𝟎𝟎‖

). We build the 

orthonormal bases 𝐁𝐁(𝒈𝒈,𝒖𝒖) and 𝐁𝐁(𝒈𝒈′,𝒖𝒖′). The obliquity rotation is 

𝐎𝐎𝐛𝐛𝐎𝐎(𝒈𝒈,  𝒈𝒈′,𝒖𝒖,𝒖𝒖′) =  𝐁𝐁(𝒈𝒈′,𝒖𝒖′)�𝐁𝐁(𝒈𝒈,𝒖𝒖)�−𝟏𝟏 S11    

It is a rotation matrix expressed in the orthonormal basis 𝐁𝐁𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜 that transforms 𝐁𝐁(𝒈𝒈,𝒖𝒖) into 

𝐁𝐁(𝒈𝒈′,𝒖𝒖′). This rotation should be compensated by its inverse in order to put in coincidence the plane 

𝒈𝒈 with the plane 𝒈𝒈′, and the direction 𝒖𝒖 with the direction  𝒖𝒖′ . 

S1.4. Definition of unconventional twinning 

We call conventional twin a twin whose lattice distortion is expressed by a simple shear matrix. The 

habit plane of these twins is the shear plane, which is also the plane maintained fully invariant by the 

shear distortion. This means that for two non-collinear directions u and v of the plane g, i.e. such that 

g.u = g.v = 0, are invariant by the distortion:  𝐃𝐃𝑝𝑝→𝑡𝑡𝒖𝒖 =  𝒖𝒖 and 𝐃𝐃𝑝𝑝→𝑡𝑡𝒗𝒗 =  𝒗𝒗. This implies that the 

dimension of the space formed by the kernel of 𝐃𝐃𝑝𝑝→𝑡𝑡 − 𝐈𝐈  is such that 

Dim(Ker(𝐃𝐃𝑝𝑝→𝑡𝑡 − 𝐈𝐈)) = 2 S12    

If the plane g is invariant, it is untilted. Therefore, a consequence of the existence of an invariant 

plane is  

𝒈𝒈′ = �𝐃𝐃𝑝𝑝→𝑡𝑡�
∗
𝒈𝒈 = λ 𝒈𝒈.  S13    

which means that 𝒈𝒈 is an eigenvector of �𝐃𝐃𝑝𝑝→𝑡𝑡�
∗
.  

It should be noted that S12 ⇒ S13, but the reciprocal is not always true. 

By noting the plane 𝒈𝒈  by its Miller indices 𝒈𝒈 = (h,k,l), and considering that the interplanar distance 

𝑑𝑑ℎ𝑘𝑘𝑘𝑘 = 1
‖𝒈𝒈‖

, we get 

1
λ

=  
𝑑𝑑′ℎ𝑘𝑘𝑘𝑘
𝑑𝑑ℎ𝑘𝑘𝑘𝑘

 
S14    
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As the plane is invariant, the volume change is completely given by 1/λ. If λ=1, there is no volume 

change, the shear is called “simple shear”. In the more general case, the shear is sometimes called 

“invariant plane strain” (IPS) and not “shear” in order to distinguish it from pure shear (stretch). To 

our knowledge, all the deformation twins reported in literature till now are simple shear.  

In the manuscript, we call unconventional twin a twin defined by a distortion matrix for which a plane 

is untilted, but not invariant. Mathematically it means that the distortion matrix checks equation S13 

but not equation S12. The untilted plane is transformed into a plane that is not equivalent to the initial 

one by any of the crystal symmetries; some of the directions contained in the plane are modified in 

length and/or angle. To our knowledge, unconventional twinning has never been reported till now.  

S2. Unconventional  (𝟐𝟐𝟏𝟏𝟐𝟐) → (𝟎𝟎𝟏𝟏𝟐𝟐)  twinning mode built by obliquity correction of the (58°, a + 

2b) prototype stretch twin 

S2.1. The (58°, a + 2b) prototype stretch twin 

The calculations were performed with Mathematica (see Supplementary Program Part A). This twin 

mode is also largely described by Cayron (2018); only its main characteristics are recalled here. 

Let us use the letter “p” for the parent crystal, and “gr” for the ∼(58°, a+2b) twins colored in “green” 

in the EBSD maps. The 𝑝𝑝 → 𝑔𝑔𝑔𝑔 distortion is associated with the transformation 𝐎𝐎𝐎𝐎2 → 𝐎𝐎𝐎𝐎′2, 𝐎𝐎𝐎𝐎 →

𝐎𝐎𝐎𝐎′, 𝐎𝐎𝐎𝐎 → 𝐎𝐎𝐎𝐎′ such that 

• 𝐎𝐎𝐎𝐎2 =  [200]𝑝𝑝 is parallel to the twin vector 𝐎𝐎𝐎𝐎2′ =  [1�01]𝑔𝑔𝑔𝑔 
• OY is invariant, 𝐎𝐎𝐎𝐎 =  [120]𝑝𝑝 is equal to 𝐎𝐎𝐎𝐎′ =  [120]𝑔𝑔𝑔𝑔 
• 𝐎𝐎𝐎𝐎 =  [1�01]𝑝𝑝 is parallel to the twin vector 𝐎𝐎𝐎𝐎′ =  [2�00]𝑔𝑔𝑔𝑔   

The vectors are here expressed by their hexagonal coordinates. The distortion matrix is thus28  

𝐅𝐅ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔  =  

⎝

⎜
⎛
�1+𝛾𝛾2

2
2−�1+𝛾𝛾2

4
𝛾𝛾2−3

2�1+𝛾𝛾2

0 1 0
0 0 2

�1+𝛾𝛾2 ⎠

⎟
⎞

  

S15    

The values of the principal strains can be calculated in the cases of ideal hard-sphere packing and pure 

magnesium; they are (-4.2%, 0, +4.4%) or (-4.6%, 0, +4.8%), respectively.  

The correspondence matrix is calculated by considering the vectors 𝐎𝐎𝐎𝐎2,𝐎𝐎𝐎𝐎, and 𝐎𝐎𝐎𝐎, and the vectors 

𝐎𝐎𝐎𝐎2′,𝐎𝐎𝐎𝐎′, and 𝐎𝐎𝐎𝐎′, in their respective hexagonal bases , i.e. by using the supercell (𝐎𝐎𝐎𝐎2,𝐎𝐎𝐎𝐎, 𝐎𝐎𝐎𝐎): 

𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 = �

2 1 −1
0 2 0
0 0 1

� and 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑔𝑔𝑔𝑔 = �

1 1 −2
0 2 0
1 0 0

� 
S16    

The expressions of the correspondence matrix in the direct and reciprocal space are: 

𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑝𝑝 = 𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔

𝑔𝑔𝑔𝑔 . �𝐁𝐁𝑠𝑠𝑠𝑠𝑝𝑝𝑒𝑒𝑔𝑔
𝑝𝑝 �−1 = �

1
2

1
4

− 3
2

0 1 0
1
2

− 1
4

1
2

� , and 

S17    
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 �𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑝𝑝�∗ = �𝐂𝐂ℎ𝑒𝑒𝑒𝑒

𝑔𝑔𝑔𝑔→𝑝𝑝�−𝑇𝑇 =  

⎝

⎜
⎛

1
2

0 −1
2

1
4

1 1
4

3
2

0 1
2 ⎠

⎟
⎞

 

The misorientation matrix is given by equation S5: 

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 =  𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑡𝑡� 𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑡𝑡→𝑝𝑝�

−1
=

⎝

⎜⎜
⎛

1

�1 + 𝛾𝛾2
0

𝛾𝛾

�1 + 𝛾𝛾2
0 1 0

−
𝛾𝛾

�1 + 𝛾𝛾2
0

1

�1 + 𝛾𝛾2⎠

⎟⎟
⎞

 

S18    

which is a rotation of angle 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 � 1
�1+𝛾𝛾2

� = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛾𝛾), that is equal to 58.5° for hard-sphere 

packing and 58.4° for magnesium. 

 Some correspondences between some planes and directions of the parent and its twins calculated 

from the correspondence matrices in equation S17 are interesting to interpret the EBSD map. They are 

given in Table S1. 

 

         Parent                        →               Twin 

Planes 

(𝟐𝟐𝟏𝟏𝟐𝟐)       ∈ {𝟏𝟏𝟐𝟐𝟑𝟑�𝟐𝟐} →     (𝟎𝟎𝟐𝟐𝟎𝟎)        ∈ {𝟎𝟎𝟐𝟐𝟐𝟐�𝟎𝟎} 

(004)       ∈ {0004} →     (2�12)        ∈ {2�112} 

Directions 

[𝟎𝟎𝟐𝟐�𝟏𝟏]       ∈ 𝟏𝟏
𝟑𝟑
〈𝟐𝟐𝟐𝟐𝟎𝟎�𝟑𝟑〉 →     [𝟐𝟐�𝟐𝟐�𝟏𝟏]        ∈ 𝟏𝟏

𝟑𝟑
〈𝟐𝟐𝟐𝟐𝟎𝟎�𝟑𝟑〉 

[200]       ∈ 1
3
〈224�0〉 →     [101]         ∈ 1

3
〈112�3〉 

[1�01]       ∈ 1
3
〈112�3〉 →     [2�00]         ∈ 1

3
〈224�0〉 

[120]       ∈ 〈011�0〉 →     [120]        ∈ 〈011�0〉 

Table S1 Correspondence between some planes and between some directions established by the 

(58°, a) stretch twin. The families of their equivalent directions/planes are indicated by using the four-

index Miller-Bravais notations. The plane g0 = (212)𝑝𝑝 and the direction u0 = [02�1]𝑝𝑝  of the parent 

crystal (in bold) will be used to build the model of the green twins.   

 

From this table, we tried two different approaches to build a model that could explain the green twins 

observed experimental EBSD maps. The first approach was the most intuitive one; it is based on the 
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fact that the direction 𝐎𝐎𝐎𝐎 = [120]𝑝𝑝 is invariant in the stretch twin model (see Table S1). However, 

after many attempts, this way was given up because all the habit planes we could predict contain the 

OY direction, which is not in agreement with the observations. A dissymmetry should be introduced 

in the system. The second approach was less intuitive; but it was revealed to fit perfectly with the 

observations, even for small details that were not noticed at the beginning. It is based on the 

correspondence between the (212)𝑝𝑝 and (012)𝑔𝑔𝑔𝑔 planes, and between the [02�1]𝑝𝑝 and [2�2�1]𝑔𝑔𝑔𝑔 

directions (Supporting Table S1). The model, described in the next section, introduces an obliquity 

correction such that the plane 𝒈𝒈0 = (212)𝑝𝑝 becomes untilted and the direction 𝒖𝒖0 = [02�1]𝑝𝑝 

invariant. 

S2.2. Unconventional twin derived from the (58°, a + 2b) stretch twin prototype 

The calculations were performed with Mathematica (see Supplementary Program Part B). 

The EBSD map shows that the habit plane of the green twin is not invariant; it is the plane  

(212)𝑝𝑝 transformed into the plane (012)𝑔𝑔𝑔𝑔. These two planes are not equivalent. The modification of 

this plane comes from the transformation of the directions it contains, i.e. [1�01]𝑝𝑝 is transformed into 

[2�00]𝑔𝑔𝑔𝑔, and [02�1]𝑝𝑝 is transformed into [2�2�1]𝑔𝑔𝑔𝑔. The transformation of the direction [1�01]𝑝𝑝 occurs 

by a stretch of 2
�1+𝛾𝛾2

≈ 1.04. There is no stretch for the [02�1]𝑝𝑝 direction because it is equivalent to 

[2�2�1]𝑔𝑔𝑔𝑔. In addition, the angle formed by the pairs αp = ([1�01]𝑝𝑝, [02�1]𝑝𝑝) = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴( 𝛾𝛾2−1
�4+5𝛾𝛾2+𝛾𝛾4

) 

≈70.56° is slightly reduced to become that the angle between the pair αt = ([02�1]𝑔𝑔𝑔𝑔 , [2�2�1]𝑔𝑔𝑔𝑔) =

𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴( 1
�4+𝛾𝛾2

) ≈ 67.15°. The stretch of the [1�01]𝑝𝑝 direction (+4%) and the angular distortion of the 

plane (-3°) are quite small. We noticed that the planar transformation (212)𝑝𝑝 →(012)𝑔𝑔𝑔𝑔 can be 

explained by the displacements of the atoms located in the upper layer l = 1/3 of the plane (212)𝑝𝑝 as 

described in Figure S4.  

Even if the direction 𝒖𝒖𝟎𝟎 = [02�1]𝑝𝑝 is not stretched, the prototype twin induces a slight rotation of 

angle ξ𝑠𝑠 of this direction. This is this rotation that should be compensated in order to build the model. 

The rotation angle ξ𝑠𝑠 can be calculated by working in the orthonormal basis; it is the angle between 

𝐇𝐇ℎ𝑒𝑒𝑒𝑒𝒖𝒖𝟎𝟎 and 𝐅𝐅𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜
𝑝𝑝→𝑡𝑡 .𝐇𝐇ℎ𝑒𝑒𝑒𝑒 𝒖𝒖𝟎𝟎, with 𝐅𝐅𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜

𝑝𝑝→𝑡𝑡  the inverse of the transpose of the matrix S15. The 

calculations show that 

ξ𝑠𝑠 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
−1 + 3𝛾𝛾2 + 3�1 + 𝛾𝛾2

�1 + 𝛾𝛾2(4 + 𝛾𝛾2)
�  

S19    

For a hard-sphere packing ratio γ = �8
3
 , the obliquity is ξ𝑠𝑠 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �99+21√33

220
� ≈ 3.29°.  
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The stretch prototype twin also induces a rotation of the plane 𝒈𝒈𝟎𝟎 = (212)𝑝𝑝. The rotation angle ξ𝑔𝑔  is 

the angle between 𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗ 𝒈𝒈𝟎𝟎 and �𝐅𝐅𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜

𝑝𝑝→𝑡𝑡 �
∗
𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗  𝒈𝒈𝟎𝟎, with �𝐅𝐅𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜

𝑝𝑝→𝑡𝑡 �
∗
 the inverse of the transpose of the 

matrix S15. The calculations show that 

ξ𝑔𝑔 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
3 + 𝛾𝛾2(3 + 2�1 + 𝛾𝛾2)

�(1 + 𝛾𝛾2)(3 + 𝛾𝛾2)(3 + 7𝛾𝛾2)
�  

S20    

For a hard-sphere packing ratio γ = �8
3
 , the obliquity is ξ𝑔𝑔 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �16+3√33

√1105
� ≈ 1.24°.  

In order to correct in one shot the two obliquities ξ𝑠𝑠 and ξ𝑔𝑔 and rotate the stretch prototype twin such 

that the direction 𝒖𝒖𝟎𝟎 = [02�1]𝑝𝑝 becomes invariant and the plane 𝒈𝒈𝟎𝟎 = (212)𝑝𝑝 becomes untilted, the 

general obliquity correction function 𝐎𝐎𝐛𝐛𝐎𝐎(𝒈𝒈, 𝒈𝒈′,𝒖𝒖, 𝒖𝒖′) described in section S1.3 is used with 

𝒈𝒈 = (212)𝑝𝑝, 𝒈𝒈′ = �𝐅𝐅ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡�

∗
𝒈𝒈, 𝒖𝒖 = [02�1]𝑝𝑝, 𝒖𝒖′ = 𝐅𝐅ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔𝒖𝒖  . The result expressed as a function of 𝛾𝛾 is 

too long to be written here, even by writing separately each of its nine components. The reader can 

however see the result in Part B of the Supplementary Program.  

In the special case of a hard-sphere packing ratio γ = �8
3
 , the approximate numerical value of the 

obliquity matrix is: 

𝐎𝐎𝒈𝒈,𝒖𝒖 =  𝐎𝐎𝐛𝐛𝐎𝐎(𝒈𝒈,  𝒈𝒈′,𝒖𝒖,𝒖𝒖′)  ≈ �
0.9764 0.0452 −0.0392
−0.0443 1.0212 0.0423
0.0231 −0.0227 0.9991

� 
S21    

The obliquity angle is 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 � 1
440

(−121 + 21√33) + 803+369√33
88√1105

� ≈ 3.33° 

The distortion matrix corrected of the obliquity is 

𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 = 𝐎𝐎𝒈𝒈,𝒖𝒖

−𝟏𝟏 .𝐅𝐅ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 S22    

Despite the very long analytical expression of the general form of the obliquity matrix 𝐑𝐑, the 

distortion corrected from this obliquity can be calculated and simplified. The analytical expressions of 

the nine components 𝐃𝐃𝑖𝑖𝑖𝑖 of 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 are:   
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𝐃𝐃11 =
A

6 + 2𝛾𝛾2
 

𝐃𝐃12 =
3(𝛾𝛾2 − 3)

4A
 

𝐃𝐃13 =
3(𝛾𝛾2 − 3)

2A
 

𝐃𝐃21 =
3 − 2𝛾𝛾2 − 𝛾𝛾4 + A

12 + 7𝛾𝛾2 + 𝛾𝛾4
 

𝐃𝐃22 =
−9 + 4𝛾𝛾4 + 5A + 𝛾𝛾2(15 + A)

2(4 + 𝛾𝛾2)A
 

𝐃𝐃23 =
4𝛾𝛾4 − 𝛾𝛾2(−15 + A) − 3(3 + A)

(4 + 𝛾𝛾2)A
 

𝐃𝐃31 =
−3 + 2𝛾𝛾2 + 𝛾𝛾4 − A
2(12 + 7𝛾𝛾2 + 𝛾𝛾4)

 

𝐃𝐃32 =
−45 − 59𝛾𝛾4 − 7𝛾𝛾6 + 57A + 𝛾𝛾2(−129 + 13A)

4(36 + 105𝛾𝛾2 + 52𝛾𝛾4 + 7𝛾𝛾6)
 

𝐃𝐃33 =
27 + 45𝛾𝛾4 + 7𝛾𝛾6 + 57B + 𝛾𝛾2(81 + 13A)

2(36 + 105𝛾𝛾2 + 52𝛾𝛾4 + 7𝛾𝛾6)
 

S23    

with 𝐴𝐴 = �(3 + 𝛾𝛾2)(3 + 7𝛾𝛾2)  

It is checked that this distortion matrix 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 maintains invariant the direction 𝒖𝒖𝟎𝟎 = [02�1]𝑝𝑝 and that 

�𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡�

∗
 maintains untilted the plane 𝒈𝒈𝟎𝟎 = (212)𝑝𝑝 . 

For the ideal hard-sphere packing ratio, the distortion matrix takes the value  

𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔  =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

�65
17
2

−
3

4√1105
−

3
2√1105

−
1
4

+
3�13

85
4

23
40

+
107

8√1105
−

17
20

+
107

4√1105

1
8
−

3�13
85

8
−

23
80

+
33� 5

221
16

17
40

+
33� 5

221
8 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 

≈ �
0.9777 −0.0226 −0.0451
0.0433 0.9774 −0.0453
−0.0217 0.0227 1.0455

� 

S24    

As 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 differs from 𝐅𝐅ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔 only by the obliquity correction, the correspondence matrix given by 

equation S17 is not affected. The distortion 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 is unconventional as the untilted plane (212)𝑝𝑝, 

which is also the habit plane of the green twin, is not fully invariant but transformed into the plane 

(012)𝑔𝑔𝑔𝑔. The modes of plasticity required to accommodate this deformation are not the subject of the 
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paper, but it is hoped that deeper TEM investigations and molecular dynamics simulations can bring 

important elements of responses.  

We have seen in section S2.1 that the rotation matrix 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 between the parent and the green twin 

associated with the stretch distortion 𝐅𝐅ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔  is a rotation of axis OY = [120]hex and of angle θ𝐹𝐹 =

𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴( 1
�1+𝛾𝛾2

), that is 58.5° for hard-sphere packing,  58.4° for magnesium. Now, if instead of the 

stretch prototype 𝐅𝐅ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔, the distortion 𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔  applies, the orientation of the twinned crystal is 

slightly modified. The new expression of orientation matrix 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 between the twin and the parent is 

obtained by using the distortion matrix and the correspondence matrix in equation S5; it is calculated 

in part B of the Supplementary Program: 

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔  =

⎝

⎜
⎜
⎜
⎜
⎛ �

3 + 𝛾𝛾2

3 + 7𝛾𝛾2
−3 + 2𝛾𝛾2

A
6𝛾𝛾2

A

2(3 − 𝛾𝛾2(2 + 𝛾𝛾2) + 𝐴𝐴)
(4 + 𝛾𝛾2)A

−6 + 13𝛾𝛾2 + 3𝛾𝛾4 + 2A
(4 + 𝛾𝛾2)A

2𝛾𝛾2(9 + 𝛾𝛾2 − A)
(4 + 𝛾𝛾2)A

18
3 + 7𝛾𝛾2 − 5A

9(12 + 𝛾𝛾2)
9 + 7𝛾𝛾4 + 21A + 4𝛾𝛾2(6 + A)

24𝛾𝛾4 + 7𝛾𝛾6 + 12A + 𝛾𝛾2(9 − 2𝐴𝐴)
(3 + 7𝛾𝛾2)(12 + 7𝛾𝛾2 + 𝛾𝛾4) ⎠

⎟
⎟
⎟
⎟
⎞

 

S25    

with 𝐴𝐴 = �(3 + 𝛾𝛾2)(3 + 7𝛾𝛾2)  

The rotation angle is 

θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
9 + 9𝛾𝛾2 + 2𝛾𝛾4 − A

(4 + 𝛾𝛾2)A �  
S26    

The rotation axis is a complex form of the packing ratio 𝛾𝛾; it slightly deviates from the axis OY = 

[120]hex. In the case of the ideal hard-sphere packing ratio, the rotation angle is  

θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �− 3
20

+
�8513
4
� ≈ 60.71° , and the axis is �1, 2, 3

(31+√1105)
�
ℎ𝑒𝑒𝑒𝑒

≈  [1, 2, 0.047]ℎ𝑒𝑒𝑒𝑒. For 

magnesium the angle is θ𝐷𝐷 ≈ 60.76°, and the axis is ≈  [1, 2, 0.051]ℎ𝑒𝑒𝑒𝑒.  Consequently, a careful 

examination of the rotation angle of the misorientation between the twin and its parent permits to 

know whether this twin directly comes from the prototype stretch distortion 𝐅𝐅ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 or from its derived 

obliquity-corrected form, i.e. 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔.  In the former case the misorientation angle is close 58° and in 

the latter case is close to 61°. Both forms exist in the EBSD maps of Figure1 and Figure S1. 

The other method to distinguish the twin generated by distortion 𝐅𝐅ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔  from the one generated by 

𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔  consists in considering the 〈201〉 directions. All are rotated by the distortion 𝐅𝐅ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔 whereas 

the distortion matrix 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 maintains the direction 𝒖𝒖𝟎𝟎 = [02�1]𝑝𝑝 invariant.  

A rotation equivalent to 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔that has 𝒖𝒖𝟎𝟎 for rotation axis is found by using a 6-fold rotation 

symmetry. In the basis  𝐁𝐁ℎ𝑒𝑒𝑒𝑒 , and noted by its Seitz symbol, this symmetry is 

𝟔𝟔001−  = �
0 1 0
−1 1 0
0 0 1

� 
S27    
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The equivalent rotation between the twin and the parent crystal is 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔.𝟔𝟔001− . This rotation matrix is 

explicitly written in PartB of the Supplementary Program. The rotation angle is 

θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
6 − 𝛾𝛾2

2A �  
S28    

In the case of hard-sphere packing, this angle is θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �� 5
221

� ≈ 81.35° . It was checked that 

the rotation axis is indeed 𝒖𝒖𝟎𝟎 = [02�1]𝑝𝑝 , independently of the packing ratio 𝛾𝛾.The commercial EBSD 

programs do not give all the equivalent rotations but only the disorientation, i.e. the rotation that 

among all the equivalent rotations has the lowest angle. The present example shows that this choice is 

sometimes not well adapted, as the rotation axis of 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 is complex, even if close to [120], whereas 

that of 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔.𝟔𝟔001−  is simply a rotation around the [02�1] direction. 

S3. Unconventional  (𝟎𝟎𝟏𝟏𝟐𝟐) → (𝟐𝟐𝟏𝟏𝟐𝟐) twinning mode by obliquity correction of the (86°, a) twin 

The experimental EBSD maps show that the extension “yellow” twins are often co-formed with the 

“green” twins and constitute green-yellow “stripes” as that in the green rectangle of Figure1a. In the 

EBSD map acquired in the cross-section B, the yellow twins can also appear orange or red, as shown 

in the Figure S1. The striking point is that these the “yellow” twins are conventional twins of the 

parent “grey” crystal: their habit plane is the plane (212)𝑝𝑝, and this plane is common to both the 

parent and “yellow” crystal. The misorientation between the “yellow” twins and the parent “grey” 

crystal experimentally measured from the EBSD maps is a rotation of 48° around an axis close to a 

〈241〉 direction, as shown in Figure1b,c. To the best of our knowledge this twin has never been 

reported or predicted; which means that, even if conventional, there is not yet crystallographic model 

for it. In order to build such a model, additional information is required. We noticed that the 

misorientation between the yellow twins and the green twins is close to (86°, a), with an interface 

plane close to {102}, which means that the yellow and green twins are linked by an kind of extension 

twin relation, or a twinning relation close to that one.  

The crystallographic model of (86°, a) extension twinning in hcp metals was proposed by correcting 

the obliquity of a (90°, a) prototype stretch twin to maintain a plane {102} untilted (Cayron, 2017a). 

The correspondence matrix written in the reciprocal space shows that among the five other equivalent 

{102} planes, one is also transformed into another {102} plane (by conjugation), and the four other 

ones are transformed into {212} planes. Some of these four {102} planes transformed into {212} 

planes are only slightly tilted during the extension twinning. Thus, it is possible, by adding an 

obliquity correction to a conventional extension twin, to change the conventional extension twin into 

an unconventional twin that transforms a {102} plane into a {212} plane without tilt. The green twin 

transforms a {212}𝑝𝑝 plane into a {102}𝑔𝑔𝑔𝑔 plane, and the yellow twin would transform back this 

{102}𝑔𝑔𝑔𝑔 plane into a {212}𝑝𝑝 plane, such that the yellow twin would leave invariant the {212}𝑝𝑝 plane 
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of the parent crystal, i.e. {212}𝑝𝑝 = {212}𝑦𝑦𝑒𝑒, as observed in the EBSD maps. Before detailing the 

obliquity correction that will be applied to the conventional extension twin, let us determine the 

appropriate reference frame that should be used to express the extension twinning distortion matrix in 

order to be composed with the green twin. 

S3.1. The conventional (86°, a) twin in an adequate basis 

The calculations were performed with Mathematica (see Supplementary Program Part C). 

In order to build the unconventional yellow twin derived from a conventional (86°, a) extension twin, 

we have to quickly recall some the crystallographic details of this twin. The (86°, a) extension twin 

described in the paper21 is an extension twin on the plane (01�2)𝑝𝑝. This twin was shown to derive from 

a stretch prototype, called (90°, a) twin. Most of the calculations (Cayron, 2017a) were done by 

assuming an ideal hard-sphere packing ratio in order to determine the continuous form of the 

distortion. The calculations related to the general case depending on γ were not explicitly detailed. Let 

us present them now. The distortion matrix associated with the (90°, a) twin is  

𝐔𝐔ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡  =  �

1 0 0
0 𝛾𝛾

√3
0

0 0 √3
𝛾𝛾

�  

S29    

This (90°, a) stretch prototype twin induces a rotation of the plane 𝒈𝒈 = (01�2)𝑝𝑝 around the axis 

[100]𝑝𝑝. This rotation 𝐑𝐑𝒈𝒈 has for rotation angle ξ𝑔𝑔  that can be calculated by working in the 

orthonormal basis; it is the angle between 𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗ 𝒈𝒈 and �𝐔𝐔𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜

𝑝𝑝→𝑡𝑡 �
∗
.𝐇𝐇ℎ𝑒𝑒𝑒𝑒

∗  𝒈𝒈, with �𝐔𝐔𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜
𝑝𝑝→𝑡𝑡 �

∗
 the inverse 

of the transpose of the matrix S29. The calculations computed in Part C of the Supplementary 

Program show that  

ξ𝑔𝑔 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
2√3𝛾𝛾

3 + 𝛾𝛾2�
  

S30    

After the obliquity correction, the distortion matrix becomes  

𝐄𝐄ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡  = 𝐑𝐑𝒈𝒈

−𝟏𝟏.𝐔𝐔ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡 =

⎝

⎜⎜
⎛

1 − 3−𝛾𝛾2

2(3+𝛾𝛾2)
3−𝛾𝛾2

3+𝛾𝛾2

0 2𝛾𝛾2

3+𝛾𝛾2
2(3−𝛾𝛾2)
3+𝛾𝛾2

0 − 3−𝛾𝛾2

2(3+𝛾𝛾2)
6

3+𝛾𝛾2 ⎠

⎟⎟
⎞

  

S31    

For the ideal hard-sphere packing ratio, the obliquity is ξ𝑔𝑔 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �12√2
17

� ≈ 3.37° , and the 

obliquity-corrected distortion matrix becomes 

𝐄𝐄ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑡𝑡  =  

⎝

⎜
⎛

1 − 1
34

1
17

0 16
17

2
17

0 − 1
34

18
17⎠

⎟
⎞

  

S32    
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The distortion matrix S32 generates the conventional (86°, a) twin for which the invariant plane is 

(01�2)𝑝𝑝. In order to continue working with coherent coordinates in the system formed by the “green”, 

“yellow” and “grey” crystals, we need to use an extension twin such that, once combined with the 

green twin distortion S23, it yields a conventional twin on the (212)𝑝𝑝  plane. A hexagonal symmetry 

is thus introduced; its choice will be justified a posteriori by the internal coherency of the calculations 

and by the perfect agreement with the experimental EBSD observations. This internal symmetry noted 

by its Seitz symbol is 

𝟐𝟐110  = �
0 1 0
1 0 0
0 0 −1

�  
S33    

It allows establishing the distortion matrix of the (102)𝑝𝑝 extension twin from that of the (01�2)𝑝𝑝 

extension twin given in equation S32: 

𝐄𝐄ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  = (𝟐𝟐110)−1 𝐄𝐄ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑡𝑡𝟐𝟐110 =  

⎝

⎜⎜
⎛

2𝛾𝛾2

3+𝛾𝛾2
0 −2(3−𝛾𝛾2)

3+𝛾𝛾2

− 3−𝛾𝛾2

2(3+𝛾𝛾2)
1 − 3−𝛾𝛾2

(3+𝛾𝛾2)
3−𝛾𝛾2

2(3+𝛾𝛾2)
0 6

3+𝛾𝛾2 ⎠

⎟⎟
⎞

  

S34    

To be clearer, we have used in equation S34 a notation that specifies that the parent crystal is the 

green grain and that the yellow grains are linked to it by an extension twin (even if not yet corrected 

by the obliquity). Indeed, the parent index “p” is here “gr” and the twin index “t” is “gr”. 

The correspondence matrices in the direct and reciprocal spaces are 

𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑦𝑦𝑒𝑒→𝑔𝑔𝑔𝑔 = 𝐂𝐂ℎ𝑒𝑒𝑒𝑒

𝑦𝑦𝑒𝑒→𝑔𝑔𝑔𝑔𝟐𝟐110 =  �
−1

2
1 1

0 0 2
1
2

0 0
�   

and �𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑦𝑦𝑒𝑒→𝑔𝑔𝑔𝑔�∗ = �

0 1 0
0 −1

2
1
2

2 1 0
�   

S35    

And the misorientation matrix is 

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  = (𝟐𝟐110)−1 𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 =  

⎝

⎜
⎜
⎜
⎛

0 1 −
6

3 + 𝛾𝛾2
4𝛾𝛾2

3 + 𝛾𝛾2

1 −
3

3 + 𝛾𝛾2
2𝛾𝛾2

3 + 𝛾𝛾2

0
3

3 + 𝛾𝛾2
−1 +

6
3 + 𝛾𝛾2⎠

⎟
⎟
⎟
⎞

 

S36    

In the case of hard-sphere packing the distortion and orientation matrices take rational values: 

𝐄𝐄ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  =  

⎝

⎜
⎛

16
17

0 − 2
17

− 1
34

1 − 1
17

1
34

0 18
17 ⎠

⎟
⎞

 and  𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  =  

⎝

⎜
⎛

0 − 1
17

32
17

1 − 9
17

16
17

0 9
17

1
17⎠

⎟
⎞

 

S37    
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Now that the appropriate basis is found to express the conventional extension twin, the additional 

obliquity correction required to get the planar distortion (012) → (212) without tilt can be 

determined.  

S3.2. The unconventional twin derived from the (86°, a) twin prototype 

The calculations were performed with Mathematica (see Supplementary Program Part D). 

The extension twin S34 leaves invariant the plane (102)𝑔𝑔𝑔𝑔 and the direction [2�2�1]𝑔𝑔𝑔𝑔 , and it 

transforms the plane (012)𝑔𝑔𝑔𝑔 into the plane (212)𝑦𝑦𝑒𝑒 by the correspondence matrix S35, but this plane 

is tilted. Now, we will build by obliquity correction of the conventional extension twin S34 an 

unconventional twin such that the plane (012)𝑔𝑔𝑔𝑔 is transformed into the plane (212)𝑦𝑦𝑒𝑒 without tilt, 

and such that the direction [2�2�1]𝑔𝑔𝑔𝑔 becomes invariant. This twin, when composed with the 

unconventional “green” twin, will give a conventional twin relatively to the “grey” parent crystal. In 

order to determine the obliquity matrix, one could directly apply the general function S21, but we 

noticed that correcting the obliquity of the plane 𝐠𝐠 = (012)𝑔𝑔𝑔𝑔 is sufficient to also correct the obliquity 

of the direction [2�2�1]𝑔𝑔𝑔𝑔, as detailed as follows.  

The tilt ξ𝑔𝑔  of the plane 𝐠𝐠 = (012)𝑔𝑔𝑔𝑔 by the conventional distortion matrix 𝐄𝐄ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 can be calculated 

by working in the orthonormal basis; it is the angle between 𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗ 𝒈𝒈 and 𝐇𝐇ℎ𝑒𝑒𝑒𝑒

∗ �𝐄𝐄ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒�∗𝒈𝒈, with 

�𝐄𝐄ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒�∗ the inverse of the transpose of the matrix S34: 

ξ𝑔𝑔 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
18 + 27𝛾𝛾2 + 5𝛾𝛾4

2(3 + 𝛾𝛾2)A �  
S38    

The obliquity rotation axis written in the hexagonal basis is 

𝛚𝛚𝑔𝑔 =
3 − 𝛾𝛾2

2√2(3 + 𝛾𝛾2)
[2� , 2� , 1] 

S39    

The rotation matrix required to compensate the tilt of the plane 𝐠𝐠0 = (012)𝑝𝑝 can thus be calculated, 

but its analytical expression depending on the packing ratio is too large to fit the page width. In the 

case of ideal 𝛾𝛾 ratio, the obliquity rotation angle is  ξ𝑔𝑔 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �113
17
� 5
221

� ≈ 1.11° and the rotation 

axis in the hexagonal basis is  𝛚𝛚𝑔𝑔 = 1
17√2

[2� , 2� , 1]. 

The obliquity-corrected distortion matrix is noted 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 . The analytical expressions of the nine 

components 𝐃𝐃𝑖𝑖𝑖𝑖 of 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 depending on the stacking ratio calculated with Mathematica are:  
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𝐃𝐃11 =

2(−1 +�3 + 7𝛾𝛾2
3 + 𝛾𝛾2 ) + 𝛾𝛾2(2 +�3 + 7𝛾𝛾2

3 + 𝛾𝛾2 )

2(4 + 𝛾𝛾2)
 

𝐃𝐃12 =
−6 − 3𝛾𝛾2 − 𝛾𝛾4 + 2A

(4 + 𝛾𝛾2)A
 

𝐃𝐃13 =
11𝛾𝛾2 + 5𝛾𝛾4 − 6(1 + A)

(4 + 𝛾𝛾2)A
 

𝐃𝐃21 =
−3 + 2𝛾𝛾2 + 𝛾𝛾4 − A

12 + 7𝛾𝛾2 + 𝛾𝛾4
 

𝐃𝐃22 =
2(3 + 6𝛾𝛾2 + 𝛾𝛾4 + A)

(4 + 𝛾𝛾2)A
 

𝐃𝐃23 =
2(3 + 5𝛾𝛾2 + 2𝛾𝛾4 − 3A)

(4 + 𝛾𝛾2)A
 

𝐃𝐃31 =
3 − 2𝛾𝛾2 − 𝛾𝛾4 + A
24 + 14𝛾𝛾2 + 2𝛾𝛾4

 

𝐃𝐃32 =
9 + 𝛾𝛾2 − A
(4 + 𝛾𝛾2)A

 

𝐃𝐃33 =
3(9 + 7𝛾𝛾4 + 7A + 3𝛾𝛾2(8 + A))

(4 + 𝛾𝛾2)𝐴𝐴2
 

S40    

with 𝐴𝐴 = �(3 + 𝛾𝛾2)(3 + 7𝛾𝛾2)  

In the case of ideal hard-sphere packing the distortion matrix takes the value: 

𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛ 1

4
+

7�13
85

4
3

10
−

19
2√1105

−
9

10
+

53
2√1105

1
4
−

3�13
85

4
3

10
+

47
2√1105

−
9

10
+

11� 5
221

2

−
1
8

+
3�13

85
8

−
3

20
+

21
4√1105

9
20

+
81

4√1105 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

≈ �
0.9344 0.0142 −0.1028
−0.0433 1.0069 −0.0727
0.0217 0.0079 1.0592

� 

S41    

It can checked that 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 leaves invariant the direction 𝒖𝒖0 = [2� , 2� , 1]𝑔𝑔𝑔𝑔 and leaves untilted the 

plane (012)𝑔𝑔𝑔𝑔 

The orientation of the unconventional twin is given by the misorientation matrix between the 

hexagonal bases. It is 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 = 𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 �𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑦𝑦𝑒𝑒→𝑔𝑔𝑔𝑔�−1  
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𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  

=

⎝

⎜
⎜
⎜
⎛

−6 − 3𝛾𝛾2 − 𝛾𝛾4 + 2𝐴𝐴
(4 + 𝛾𝛾2)𝐴𝐴

2(3 − 𝛾𝛾2(2 + 𝛾𝛾2) + 𝐴𝐴)
(4 + 𝛾𝛾2)𝐴𝐴

−
2𝛾𝛾2(7 + 3𝛾𝛾2 + 𝐴𝐴)

(4 + 𝛾𝛾2)𝐴𝐴
2(3 + 6𝛾𝛾2 + 𝛾𝛾4 + 𝐴𝐴)

(4 + 𝛾𝛾2)𝐴𝐴
−6 − 11𝛾𝛾2 − 3𝛾𝛾4 + 2𝐴𝐴

(4 + 𝛾𝛾2)𝐴𝐴
−

2𝛾𝛾2(−1 + 𝛾𝛾2 + 𝐴𝐴)
(4 + 𝛾𝛾2)𝐴𝐴

9 + 𝛾𝛾2 − A
(4 + 𝛾𝛾2)𝐴𝐴

18
3 + 7𝛾𝛾2 − 5𝐴𝐴

−12 + 𝛾𝛾2(−8 + 𝐴𝐴)
(4 + 𝛾𝛾2)𝐴𝐴 ⎠

⎟
⎟
⎟
⎞

 

S42    

with 𝐴𝐴 = �(3 + 𝛾𝛾2)(3 + 7𝛾𝛾2)  

This orientation matrix is fully equivalent by internal symmetry to the matrix 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 𝟐𝟐100 , which is 

a rotation around the axis 𝒖𝒖0 = [2� , 2� , 1]𝑔𝑔𝑔𝑔 and of angle  

θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
−3− 2𝛾𝛾2

A �  
S43    

In the case of hard-sphere packing, this angle is θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �−5� 5
221

� ≈ 138.77° .  

 

S4. New conventional twin generated by the composition of the unconventional twins derived 
from the (58°, a + 2b) and (86°,b) twin prototypes. 

The calculations were performed with Mathematica (see Supplementary Program Part E). 

From the previous calculations and from the EBSD results, the crystallographic link between the 

parent, green and yellow twins can be summarized as follows:  

1. The green twin results from an unconventional (212)𝑝𝑝 → (012)𝑔𝑔𝑔𝑔  twinning of the parent 
crystal. The correspondence, distortion and orientation matrices associated with this twin 
mode are 𝐂𝐂ℎ𝑒𝑒𝑒𝑒

𝑔𝑔𝑔𝑔→𝑝𝑝, 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 and 𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔 given by equations S17, S23,  and S25. 
2. The yellow twins are linked to the green twins by an unconventional (012)𝑔𝑔𝑔𝑔   → (212)𝑦𝑦𝑒𝑒  

twinning relationship that is an obliquity-corrected form of extension twinning. The 
correspondence, distortion and orientation matrices associated with this twin mode are 
𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑦𝑦𝑒𝑒→𝑔𝑔𝑔𝑔 , 𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 and 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  given by equations S35, S40, and S42, respectively.  

3. The yellow twins formed by the combination of the two unconventional twins, i.e. 𝒈𝒈𝟎𝟎 =
(212)𝑝𝑝 → (012)𝑔𝑔𝑔𝑔  followed by (012)𝑔𝑔𝑔𝑔 → (212)𝑦𝑦𝑒𝑒 , appears as a conventional twin 
relatively to the parent crystal because the plane 𝒈𝒈𝟎𝟎 = (212)𝑝𝑝 is restored, i.e. (212)𝑝𝑝 →
(212)𝑦𝑦𝑒𝑒.  

4. The direction 𝒖𝒖𝟎𝟎 = [02�1]𝑝𝑝  is maintained invariant by the three twinning modes, only its 
indexes are changed into equivalent ones:  [02�1]𝑝𝑝 → [2�2�1]𝑔𝑔𝑔𝑔→[02�1]𝑦𝑦𝑒𝑒 

Now, let us define the crystallographic properties of the conventional (parent → yellow) twin. Its 

correspondence, distortion and orientation matrices are determined by combination of the matrices 

determined in the previous sections.  
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S4.1.1. Composition of the correspondence matrices  

The first correspondence 𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑝𝑝 is followed by the second correspondence 𝐂𝐂ℎ𝑒𝑒𝑒𝑒

𝑦𝑦𝑒𝑒→𝑔𝑔𝑔𝑔. Their composition 

is simply 

𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑦𝑦𝑒𝑒→𝑝𝑝 = 𝐂𝐂ℎ𝑒𝑒𝑒𝑒

𝑦𝑦𝑒𝑒→𝑔𝑔𝑔𝑔.𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑝𝑝  =

⎝

⎜
⎜
⎛

1
4

5
8

5
4

1 −
1
2

1
1
4

1
8

−
3
4⎠

⎟
⎟
⎞

 

and  �𝐂𝐂ℎ𝑒𝑒𝑒𝑒
𝑦𝑦𝑒𝑒→𝑝𝑝�∗ =

⎝

⎜
⎛

1
4

1 1
4

5
8

− 1
2

1
8

5
4

1 −3
4⎠

⎟
⎞
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S4.1.2. Composition of the distortion matrices 

The first distortion 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 is followed by the second distortion 𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒. It is necessary to work in the 

same basis to compose these active matrices. The matrix 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 expressed in the parent hexagonal 

basis becomes  𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔.𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒. �𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔�−1. The composition is thus  

𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒 = 𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔.𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒 . �𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔�−1.𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔  

=

⎝

⎜
⎜
⎜
⎛

33
28

−
30

7(3 + 7𝛾𝛾2)
5(−3 + 𝛾𝛾2)
8(3 + 7𝛾𝛾2)

5(−3 + 𝛾𝛾2)
4(3 + 7𝛾𝛾2)

−3 + 𝛾𝛾2

3 + 7𝛾𝛾2
3 + 15𝛾𝛾2

6 + 14𝛾𝛾2
−3 + 𝛾𝛾2

3 + 7𝛾𝛾2

−
1
4

+
6

3 + 7𝛾𝛾2
−

1
8

+
3

3 + 7𝛾𝛾2
3
4

+
6

3 + 7𝛾𝛾2⎠

⎟
⎟
⎟
⎞
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It is checked that 𝐷𝐷𝐷𝐷𝐷𝐷�𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒� = 1, and that the directions [02�1]𝑝𝑝 and [1�01]𝑝𝑝 are invariant by 𝐃𝐃ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑦𝑦𝑒𝑒 

whatever the packing ratio. This proves that 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒 is a simple shear matrix that leaves invariant the 

plane (212)ℎ𝑒𝑒𝑒𝑒. Consequently, 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒 is a conventional twinning matrix. The shear vector s is 

calculated by considering the normalized vector perpendicular to the plane 𝒈𝒈 = (212)𝑝𝑝 expressed in 

the orthonormal basis, i.e. 𝒏𝒏 = 𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗ 𝒈𝒈

�𝐇𝐇ℎ𝑒𝑒𝑒𝑒
∗ 𝒈𝒈�

. The shear vector is  

𝒔𝒔𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜 = (𝐃𝐃𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜
𝑝𝑝→𝑦𝑦𝑒𝑒𝑘𝑘𝑘𝑘𝑜𝑜𝑦𝑦 − 𝐈𝐈).𝐧𝐧 S46    

When expressed in the hexagonal basis it becomes 

𝒔𝒔ℎ𝑒𝑒𝑒𝑒 = (𝐇𝐇𝒉𝒉𝒉𝒉𝒙𝒙)−𝟏𝟏. 𝒔𝒔𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜 =
3 − 𝛾𝛾2

𝛾𝛾�9 + 21𝛾𝛾2
�5� , 4� , 7�ℎ𝑒𝑒𝑒𝑒 

S47    

In four-index notation this vector is of type 〈1, 2 , 3� , 7〉ℎ𝑒𝑒𝑒𝑒. The shear amplitude is given by its norm, 

that can be calculated directly from 𝒔𝒔𝑜𝑜𝑔𝑔𝑡𝑡ℎ𝑜𝑜. It is  
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𝐴𝐴 = � 7
48

|3 − 𝛾𝛾2|
𝛾𝛾
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In the case of hard-sphere packing ratio, the analytical expression of the distortion matrix takes 

rational values: 

 𝐃𝐃ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒 =

⎝

⎜
⎛

51
52

− 1
104

− 1
52

− 1
65

129
130

− 1
65

7
260

7
520

267
260 ⎠

⎟
⎞
≈ �

0.9808 −0.0096 −0.01922
−0.0154 0.9923 −0.0154
0.0269 0.0135 1.0269

� 
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The shear value along the direction �5� , 4� , 7�ℎ𝑒𝑒𝑒𝑒 is  𝐴𝐴 = 1
24
�7
2
≈ 0.078. 

S4.1.3. Composition of the coordinate transformation matrices 

 The first coordinate transformation 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑔𝑔𝑔𝑔 is followed by the second coordinate transformation 

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒. The composition of these passive matrices is simply 

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒 = 𝐓𝐓ℎ𝑒𝑒𝑒𝑒

𝑝𝑝→𝑔𝑔𝑔𝑔 .𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑔𝑔𝑔𝑔→𝑦𝑦𝑒𝑒  =

⎝

⎜
⎜
⎜
⎛

−3 + 3𝛾𝛾2

3 + 7𝛾𝛾2
5𝛾𝛾2

3 + 7𝛾𝛾2
10𝛾𝛾2

3 + 7𝛾𝛾2
8𝛾𝛾2

3 + 7𝛾𝛾2
−

3(1 + 𝛾𝛾2)
3 + 7𝛾𝛾2

8𝛾𝛾2

3 + 7𝛾𝛾2
6

3 + 7𝛾𝛾2
3

3 + 7𝛾𝛾2
3 − 7𝛾𝛾2

3 + 7𝛾𝛾2⎠

⎟
⎟
⎟
⎞
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An equivalent orientation matrix is obtained by using the internal symmetry 𝟐𝟐210 ; it is a rotation 

around the 𝒖𝒖0 = [02�1]𝑝𝑝 axis and of angle  

θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
−6 + 11𝛾𝛾2

6 + 14𝛾𝛾2 �
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With the ideal hard sphere packing ratio, the disorientation matrix is rational 

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒𝟐𝟐210  =

⎝

⎜
⎜
⎛

11
13

−
8

13
−

16
13

31
65

33
65

−
64
65

27
65

−
9

65
47
65 ⎠

⎟
⎟
⎞
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And the rotation angle is  θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 � 7
13
� = 57.42° 

As the rotation between the parent and yellow twins (𝑝𝑝 → 𝑦𝑦𝐷𝐷) is around the axis 𝒖𝒖0 = [02�1]𝑝𝑝  and as 

this direction is also left invariant by the rotation associated with the (𝑝𝑝 → 𝑔𝑔𝑔𝑔) twin and by the 

rotation associated with the (𝑔𝑔𝑔𝑔 → 𝑦𝑦𝐷𝐷) twin, it implies that the rotation angles should be linked by an 

addition. The rotation angles around the 𝒖𝒖0 axis are given in equations S28, S43 and S51, for the 

(𝑝𝑝 → 𝑔𝑔𝑔𝑔), (𝑔𝑔𝑔𝑔 → 𝑦𝑦𝐷𝐷) and (𝑦𝑦𝐷𝐷 → 𝑝𝑝) twins. Even if not obvious, it is indeed checked that 

−ArcCos�
6 − 𝛾𝛾2

2�(3 + 𝛾𝛾2)(3 + 7𝛾𝛾2)
� + ArcCos�

−3 − 2𝛾𝛾2

�(3 + 𝛾𝛾2)(3 + 7𝛾𝛾2)
� = ArcCos(

−6 + 11𝛾𝛾2

6 + 14𝛾𝛾2 ) S53    



    

22 

 

and thus also in the particular case of hard-sphere packing: 

−ArcCos��
5

221
� + ArcCos�−5�

5
221

� = ArcCos �
7

13
� 
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The disorientation, i.e. the equivalent rotation with the minimum rotation angle in absolute value, is 

obtained with the internal symmetry 𝟐𝟐110 . The disorientation 𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒𝟐𝟐110 is a rotation around the axis 

[2�21]𝑝𝑝 and of angle 

θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
−6 + 13𝛾𝛾2

6 + 14𝛾𝛾2 �
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With the ideal hard sphere packing ratio, the disorientation matrix is rational 

𝐓𝐓ℎ𝑒𝑒𝑒𝑒
𝑝𝑝→𝑦𝑦𝑒𝑒𝟐𝟐110  =

⎝

⎜
⎜
⎛

8
13

3
13

−
16
13

−
33
65

64
65

−
64
65

9
65

18
65

47
65 ⎠

⎟
⎟
⎞
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and the rotation angle is θ𝐷𝐷 = 𝐴𝐴𝑔𝑔𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �43
65
� = 48.58°.  

As the direction [2�21]𝑝𝑝 ≡ [241]𝑝𝑝 by internal symmetry, the calculated disorientation (48.5°, [2�21]𝑝𝑝) 

between the parent crystal and the yellow twin fits exactly that obtained in the EBSD map (Figure1c). 

S5. Summary of the calculations 

In order to get a better overview of the crystallographic characteristics of the twinning modes 

described in the previous sections, a table summarizing the main equations is given below: 

Twin mode Correspondence 

matrix 

Distortion matrix Misorientation 

matrix 

Angle of rotation 

around the axis 

u0 

(𝑝𝑝 → 𝑔𝑔𝑔𝑔) S17 S23 S25 S28 

(𝑔𝑔𝑔𝑔 → 𝑦𝑦𝐷𝐷) S35 S40 S42 S43 

(𝑝𝑝 → 𝑦𝑦𝐷𝐷) S44 S45 S50 S51 

Table S2 Summary of the main crystallographic equations related to the three twin modes. The 

last column gives the rotation angle associated with the misorientation matrix chosen among the 

equivalent ones such that the rotation axis is 𝒖𝒖0 = [02�1]𝑝𝑝 = [2�2�1]𝑔𝑔𝑔𝑔 = [02�1]𝑦𝑦𝑒𝑒.  
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