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Quartz has hundreds of strong Bragg reflections that may offer a great number

of choices for making fixed-angle X-ray analyzers and polarizers at virtually any

hard X-ray energies with selectable resolution. However, quartz crystals, unlike

silicon and germanium, are chiral and may thus appear in two different forms of

handedness that are mirror images. Furthermore, because of the threefold

rotational symmetry along the c axis, the {h1h2h3L} and {h2h1h3L} Bragg

reflections may have quite different Darwin bandwidth, reflectivity and angular

acceptance, although they have the same Bragg angle. The design of X-ray optics

from quartz crystals therefore requires unambiguous determination of the

orientation, handedness and polarity of the crystals. The Laue method and

single-axis diffraction technique can provide such information, but the variety of

conventions used in the literature to describe quartz structures has caused

widespread confusion. The current studies give detailed guidelines for design

and fabrication of quartz X-ray optics, with special emphasis on the correct

interpretation of Laue patterns in terms of the crystallography and diffraction

properties of quartz. Meanwhile, the quartz crystals examined were confirmed

by X-ray topography to have acceptably low densities of dislocations and other

defects, which is the foundation for developing high-resolution quartz-based

X-ray optics.

1. Introduction

Crystal-based X-ray optics, such as monochromators, analy-

zers, polarizers etc., are mainly fabricated from Si single

crystals (or occasionally Ge which has higher X-ray absorp-

tion). Unfortunately, high-symmetry Si (or Ge) crystals have

very limited Bragg reflections. For example, Si has only 48

different Bragg reflections for photon energy E < 16 keV (see

Table S1 in the supporting information). In Bragg diffraction

(2dsin� = � with a fixed d spacing), one can usually change the

Bragg angle � to change the wavelength � (photon energy E)

to desired values. However, there are special cases where one

has little freedom to change �. A typical example is the near-

back-reflection analyzer for inelastic X-ray scattering (IXS),

where � must be very close to 90� (Burkel et al., 1987; Sinn et

al., 2001; Ishikawa et al., 2015). Another example is an X-ray

polarizer with � = 45� that only diffracts �-polarization X-rays

(Alp et al., 2000). For such applications, the above 48 different

d values of Si can only provide 48 sparsely spaced discrete

energies. This makes it difficult or impossible to make such Si-

based X-ray optics work at arbitrary photon energies, parti-

cularly for resonant X-ray scattering experiments that require

the photon energies to be close to various atomic absorption

edges or emission lines (Gog et al., 2013; Ament et al., 2011).
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The other limitation of Si and Ge is that all the back reflec-

tions except 111 and 220 are multiple-beam diffraction with

detrimental parasite reflections (Sutter et al., 2001; Huang et

al., 2014).

A possible solution to avoid these problems is to use less

symmetric crystals, such as quartz, sapphire, lithium niobate,

silicon carbide etc. (Sutter et al., 2005). For example, Table S2

in the supporting information lists more than 700 different

Bragg reflections of quartz (�-SiO2) with back-reflection

Darwin reflectivity Rmax � 0.3. These reflections give about

420 different back-reflection energies that are almost

continuously distributed in the medium energy range 5–

16 keV. This indicates that one can use quartz to make near-

back-reflection (� ’ 90�) analyzers (or monochromators) for

any photon energy E > 5 keV (Ketenoglu et al., 2015;

Honnicke et al., 2016; Sutter & Yavaş, 2017). It also means that

one can make quartz polarizers (� ’ 45�) for arbitrary ener-

gies. Meanwhile, these reflections can be completely free of

parasite reflections owing to the non-cubic crystal structure of

quartz.

Unfortunately, most of these exotic crystals (particularly

sapphire, lithium niobate and silicon carbide) have high

densities of dislocations and other defects that are extremely

detrimental to the resolution and efficiency of Bragg diffrac-

tion. However, Sutter et al. (2006) have demonstrated that

synthetic quartz crystals grown from aqueous solutions have

an acceptably low density of dislocations and other defects.

The X-ray topographs taken from the samples studied in this

paper, as well as measurements made by other laboratories,

confirm this result. We have used such quartz crystals from

industry to make a novel flat-quartz (3039) analyzer

(combined with a multilayer collimating Montel mirror) that

achieved a high resolution of 3.9 meV (close to the theoretical

value of 3.6 meV) in resonant inelastic X-ray scattering

(RIXS) at E = 11.215 keV (Kim et al., 2017). This bandpass is

similar to the resolution of 4 meV achieved on a large-area

quartz wafer by Sutter et al. (2006) at 9.979 keV. For

comparison, the best resolution of silicon analyzers obtained

at the Ir L3 absorption edge is 25 meV (Kim et al., 2014;

Moretti Sala et al., 2013). These demonstrations, together with

recent work from other groups (e.g. Honnicke et al., 2016),

indicate that quartz-based X-ray optics may be very promising

for high- to ultrahigh-resolution RIXS and IXS (from sub-

10 meV to sub-meV) in the future.

In contrast to the mature Si optics, developing quartz optics

requires a complete set of new procedures for fabricating

quartz crystals, from orienting to cutting/dicing, etching,

polishing and characterization. In this paper we first give a

relatively comprehensive description of the X-ray diffraction

properties of quartz crystals that are associated with the

complicated crystallographic structures and the two types of

handedness. We concentrate on differentiation between the

two types of lattice planes, {h1h2h3L} and {h2h1h3L}, which

have identical d spacing but can have quite different Darwin

bandwidths, angular acceptance and diffraction efficiency.

Therefore, unambiguous differentiation between these

confusable lattice planes is usually a critical starting point for

correct fabrication of quartz optics with desired resolution and

performance.

2. Crystallographic properties of quartz

�-Quartz belongs to the trigonal crystal system with two types

of handedness, the right-handed and left-handed structures

with space groups P3221 (No. 154) and P3121 (No. 152),

respectively (International Tables for Crystallography, 2016).

Unfortunately, a variety of conventions have been used in the

literature to describe the �-quartz crystallography. For

example, Donnay & Le Page (1978) have summarized from

the earlier literature eight conventions of quartz described in

both the right- and left-handed hexagonal coordinates, but

these conventions have caused more confusion and difficulties

instead of leading to consistency. In particular, the use of the

left-handed hexagonal coordinate system makes the left-

handed quartz structure incompatible with general X-ray

crystallography principles because almost all crystal structure

factors and X-ray diffraction are calculated in right-handed

coordinate systems. Therefore, the right-handed hexagonal

coordinate system is exclusively used in this paper to describe

the unit cells of both left- and right-handed quartz structures.

In the right-handed hexagonal coordinate system, the unit cell

contains three Si atoms with fractional coordinates (u, 0, 0),

(�u, �u, 1/3) and (0, u, 2/3) and six O atoms with fractional

coordinates (x, y, z), (y, x, 2/3 � z), (�y, x � y, 2/3 + z), (�x,

y � x, 1/3 � z), (y � x, �x, 1/3 + z) and (x � y, �y, �z) for

right-handed quartz. Note that the three Si atoms form a left-

handed helix along the c[0001] axis, which is opposite to the

‘optical handedness’ (i.e. the direction the quartz crystal

rotates the plane of polarized light) (Akhavan, 2012; Donnay

& Le Page, 1978). Here we adopt the data from Le Page &

Donnay (1976): u = 0.4699, x = 0.4141, y = 0.2681 and z =

0.1188, together with the lattice constants a = b = 4.9134 Å, c =

5.4052 Å, � = � = 90� and � = 120�. The unit cell defined by

these parameters corresponds to the z(+) setting of right-

handed quartz in the right-handed hexagonal coordinate

system by Donnay & Le Page (1978). We adopt this setting

here because it seems to be the most frequently used setting in

the literature, and it has also been adopted in the database of

the software package XOP (Sanchez del Rio & Dejus, 2004).

Nevertheless, note that in addition to the eight conventions

summarized by Donnay & Le Page there are other conven-

tions in the literature that describe the atom positions with

different notations or different u, x, y and z values. The Laue

patterns and diffraction properties of right-handed quartz

presented in this paper and the supporting information were

calculated strictly with the above setting and the specific u, x, y

and z values. Accordingly, left-handed quartz has the space

group P3121, which is a mirror structure of right-handed

quartz (see x5). The Debye temperatures of the O and Si

atoms in the quartz structure are 749.31 and 790.03 K, which

were calculated from the data provided by Le Page et al.

(1980). In the following, the right-handed quartz structure is

assumed if not explicitly specified.
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On the basis of the above right-handed structure, we devel-

oped a computer program that can automatically calculate the

structure factors and the Darwin curves of all Bragg reflections

of quartz and consequently can select the reflections satisfying

any specific requirements (see the supporting information).

Our program adopts the same atomic scattering factor data-

base and the same algorithms for calculations of structure

factors and Debye–Waller factors as the software package

XOP (Sanchez del Rio & Dejus, 2004). For example, in Table

S2 of the supporting information we have used this program to

produce the complete list of strong back reflections of quartz

with Bragg energies EBR < 16 keV and maximum Darwin

reflectivity Rmax > 0.3 at room temperature (293.15 K). One

can conveniently use this table to design near-back-reflection

quartz analyzers. In general, these Bragg reflections preserve

high reflectivity also for non-back-reflection Bragg angles

(with higher photon energies). Therefore, Table S2 also

provides guidelines for choosing the suitable reflections for

general diffraction of quartz. In addition, our program, which

is freely available upon request, can be used to select all the

Bragg reflections satisfying any criteria (e.g. Bragg angles,

photon energies, reflectivity, Darwin bandwidths, angular

acceptance or their combinations), such that the most suitable

reflection(s) need never be neglected in quartz optics design.

The diffraction properties and principles revealed in

Table S2 can be understood from the detailed quartz structure.

Fig. 1 shows an idealized rendering of a quartz crystal with the

three most common types of flat faces that can be naturally

developed during growth: the r faces (major rhombohedrons)

with Miller indices f0111g, the z faces (minor rhombohedrons)

with Miller indices f1011g, and the prismatic m faces with

Miller indices f1010g and f0110g (Akhavan, 2012; Donnay &

Le Page, 1978). Here the most prominent feature is that there

is only threefold rotational symmetry along the c axis, as

indicated by Fig. 1(b). It is the lack of sixfold symmetry along

c[0001] that makes the r faces physically different from the z

faces. For instance, the r faces of as-grown quartz crystals are

usually larger than the z faces.

More generally, the lack of the sixfold symmetry can make a

Bragg reflection {h1h2h3L} [with h3 � �(h1 + h2)] different

from the reflection {h2h1h3L} in X-ray diffraction, although the

two reflections have the same Bragg angle owing to the fact

that the two sets of lattice planes (h1h2h3L) and (h2h1h3L)

have exactly the same d spacing. Note that quartz also has

twofold rotational symmetry along the a axes. On the basis of

these symmetry operations, any (h1h2h3L) lattice plane has

five equivalent planes, as listed in Table 1. Here we use

{h1h2h3L} to represent any of the six equivalent planes (or

indices of the corresponding Bragg reflections). Similarly,

{h2h1h3L} represents another six equivalent planes that are

also listed in Table 1. In general, none of the {h1h2h3L} planes

are equivalent to any of the {h2h1h3L} planes (for h1 6¼ h2),

although all 12 planes have the same spacing d. Fig. 2 shows

the intersections of the 12 lattice planes with the (0001) plane.

These planes cut the c axis at c/L or �c/L, which is not shown.

Figs. 3(a) and 3(b) show the calculated Darwin curves of

Bragg reflections f3039g and f0339g with the same Bragg angle

�B = 88.17� for photon energy E = 11.215 keV. Here the two

reflections have different bandwidths (�EBW = 3.60 and

1.65 meV, respectively) and different peak reflectivity (Rmax =

0.68 and 0.42). The angular Darwin width of f3039g is

��FWHM = 2.100, which is also different from that of f0339g,

0.9600. Fig. 3(c) shows the experimentally measured rocking

curves (solid lines) from symmetric f3039g and f0339g reflec-

tions. In these measurements, the incident beam was an

undulator beam monochromated by an Si(111) double-crystal

monochromator (DCM). Here the two rocking curves are

much wider than the theoretical Darwin curves owing to the

convolution of the instrumental functions (i.e. the finite

bandwidth and divergence of the incidence beam). But the
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Figure 1
(a) Schematic of the idealized shape of the quartz crystal with the three
types of common faces. (b) Top view of (a).

Table 1
Equivalent lattice planes of {h1h2h3L} and {h2h1h3L} for �-quartz.

fh1h2h3Lg : (h1h2h3L) (h2h3h1L) (h3h1h2L) (h2h1h3L) (h3h2h1L) (h1h3h2L)
fh2h1h3Lg : (h2h1h3L) (h3h2h1L) (h1h3h2L) (h1h2h3L) (h2h3h1L) (h3h1h2L)

Figure 2
Intersection lines of lattice planes {h1h2h3L}, {h2h1h3L} and their
equivalent planes with the (0001) plane in the hexagonal coordinate
system.



diffraction intensities clearly verify that the two reflections are

not equivalent. More such {h1h2h3L} and {h2h1h3L} reflection

pairs with different bandwidths and reflectivity can be found

in Table S2.

For X-ray diffraction and optics applications of quartz,

therefore, one must unambiguously differentiate the two types

of lattice planes. This is particularly important for making

high-resolution quartz optics with resolution better than

10 meV, where the two types of reflections can give completely

different bandwidths, efficiency and angular acceptance. In the

following, we will illustrate how to determine the {h1h2h3L}

and {h2h1h3L} planes in real crystals.

3. Determination of quartz orientation by X-ray
diffraction

For developing quartz optics, we have acquired several large

high-quality synthetic quartz crystals from Tokyo Denpa Co.

Ltd, all of which have nearly the same shape as the crystal

shown in Fig. 4(a). The crystal has naturally developed shiny r

and z faces as well as a shiny ð10�110Þ face on the left side. The

rough a and c faces are cut surfaces. Fig. 4(b) schematically

shows the top view of the crystal.

We have cut and polished a few ð3039Þ wafers, with a

thickness of 2 mm, from these crystals for topography char-

acterization. Fig. 5(a) is a white-beam transmission topograph

taken from such a wafer. Here the large imaging volume, 3.7�

2.2 � 2 mm, only contains four short dislocation segments

(black lines) with no other obvious defects, indicating that the

crystal has very high crystalline quality. In fact, for the

reflection geometry (the typical working geometry of X-ray

monochromators, analyzers and polarizers) with a small X-ray

penetration (extinction) depth of �10 mm, the reflection

topography very rarely shows any dislocations or other defects

on the surfaces of the wafers studied. For example, the 2026

symmetric reflection topograph in Fig. 5(b) is completely

dislocation free. These results agree with other groups’ recent

characterization work of quartz crystals acquired from the

same company (Sutter et al., 2006; Hönnicke et al., 2013;

personal communications with R. Verbeni at the European
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Figure 4
(a) Synthetic right-handed quartz crystal with natural flat r and z faces. The
large a and c faces are cut surfaces. The sharp edges are highlighted by
black lines. (b) Schematic of the top view of (a). Note that the coordinate
systems resulting from 	120� (threefold) rotation of the a axes about the
c axis are equivalent. Crystal dimensions: 220 � 85 � 40 mm (thickness).

Figure 5
White-beam topography of a ð3039Þ quartz crystal of thickness 2 mm. (a)
Transmission topograph. g ¼ 2022 reflection with E = 14 keV. (b)
Reflection topograph. Symmetric g ¼ 2026 reflection with E =
11.2 keV, penetration depth �14 mm.

Figure 3
(a) Calculated angular Darwin curves of symmetric 3039 and 0339
reflections of right-handed quartz at E = 11.215 keVand �B = 88.17�. �� =
0 corresponds to the Bragg angle �B = 88.17�, and the peak shift is due to
the small X-ray refraction correction. (b) The corresponding calculated
energy-dependent Darwin curves. �E = 0 corresponds to the Bragg
energy E = 11.215 keV. (c) Experimentally measured rocking curves of
the two reflections with an undulator beam monochromated by an Si(111)
DCM. The dashed lines are the theoretical rocking curves that include the
convolution of the DCM. �-polarization.



Synchrotron Radiation Facility). These crystals indicate the

growing improvements of synthetic quartz when compared

with earlier crystals reported in the literature (Lang &

Miuscov, 1967; Härtwig et al., 1977; Sutter et al., 2005).

Therefore, our topography studies show that the latest quartz

crystals are of sufficiently high quality for high-resolution X-

ray optics applications.

In order to identify the orientation of the crystal in Fig. 4,

we have to correctly determine the right-handed hexagonal

coordinate system on the crystal. For as-grown quartz crystals

with naturally developed r and z faces, one can see from

Fig. 1(b) that the crystallographic a axes are parallel to the

projections of the intersection edges between the r and z faces

onto the (0001) plane. On the basis of this principle, we can

plot the a axes on the crystal in Fig. 4(b). However, we have

two choices for the a axes: the a1–a2–a3 and a1
0–a2
0–a3
0 right-

handed hexagonal coordinate systems that are rotated from

each other by 60�. Here note that the assumed r and z faces are

with respect to the a1–a2–a3 system. In the a1
0–a2
0–a3
0 system, the

r faces (z faces) would become z faces (r faces). How can we

distinguish between the r and z faces?

In our experiments, we have used the Laue method to study

the crystal orientation in Fig. 4. Fig. 6(a) is a backward Laue

pattern taken from the crystal in Fig. 4(a). In the experiment,

an X-ray white beam from a Cu tube (operated at 30 kV and

30 mA) was incident normally on the (0001) surface and

diffracted backward to a CCD camera a distance of 36 mm

away. Fig. 6(b) is a computer simulated Laue pattern (Huang,

2010) overlapped on the recorded pattern. The simulation is

based on the a1–a2–a3 system in Fig. 4(b) and the inset of

Fig. 6(a). Obviously, the two sets of Laue patterns coincide

with each other very well. This experimentally verifies that the

a1–a2–a3 system in Fig. 4(b) is the correct choice and that the

assumed r and z faces are correct.

The Laue pattern in Fig. 6(a) correctly shows that quartz

only has threefold rotational symmetry along the c axis. For

example, although the six spots indicated by the blue and

green arrows in Fig. 6(b) are located at the sixfold symmetric

positions (with E = 11.257 keV and �B = 64.5�), the three

f3038g spots identified by the blue arrows have relatively

strong intensities, while the three f0338g spots identified by the

green arrows are almost invisible in Fig. 6(a). This difference is

consistent with our calculations. At E = 11.257 keV and �B =

64.5�, the f30�338g reflections have a theoretical bandwidth of

�EBD = 14.9 meV, an angular Darwin width of ��FWHM =

0.57300 and a Darwin peak reflectivity of Rmax = 0.91. By

contrast, the three corresponding values of the f0338g reflec-

tions are �EBD = 1.7 meV, ��FWHM = 0.06500 and Rmax = 0.35,

which correspond to much weaker integrated intensity of the

f0338g spots in Fig. 6(a). This again shows that {h1h2h3L} is not

equivalent to {h2h1h3L}. Here, if one does not have the

computer simulation capability, the three easily recognizable

f3038g diffraction spots in the (0001) backward Laue pattern

of Fig. 6(a) can be conveniently used to determine the correct

a axes, i.e. the three a axes are rotated by 30� clockwise away

from the three radial vectors from the center to the three

f3038g spots, respectively.

In our experiments, when we rotated the crystal by 180�

about the a2 axis to make Laue diffraction from the opposite

(0001) face, we obtained the same Laue pattern as Fig. 6(a)

(instead of a horizontally flipped pattern). From a similar

simulation, we may obtain another right-handed hexagonal

coordinate system a1
00–a2
00–a3
00–c00, with a1

00 = a3, a2
00 = a2, a3

00 = a1

and c00 = �c (not shown), or its equivalent 	120� rotations

along c00. However, this a1
00–a2
00–a3
00–c00 system is related to the

a1–a2–a3–c system by the twofold rotational symmetry along

the a2 axis, i.e. the two systems are equivalent. Thus, the Laue

pattern taken from either the (0001) or (0001) face always

yields the same or equivalent hexagonal coordinate system,
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Figure 6
(a) Back-reflection Laue pattern taken from the (0001) face of the quartz
crystal in Fig. 4(a). Note that the specific ð1210Þ a face in Fig. 4(a), which is
also the mirror plane A in Fig. S1 of the supporting information, is still
perpendicular to the a2 axis here. (b) Simulated Laue pattern overlapped
on the recorded one. The view direction is the same as that of Fig. 4(b),
i.e. viewed from the backside of the CCD to the crystal surface along the
�c direction. The range of colors of the spots from red to white indicates
the decrease of intensity. Image width 94 mm.



and a1
0, a2
0 and a3

0 in Fig. 4(a) can never be mistaken as the

positive crystallographic a axes on the basis of the Laue

patterns. (Meanwhile, this principle also means that quartz is a

nonpolar structure along the [0001] direction.) Therefore,

X-ray Laue diffraction can independently identify the accu-

rate orientations of quartz without relying on the crystal

shapes or faces.

After determination of the orientation by the Laue pattern,

we cut a ð3039Þ wafer and a ð0339Þ wafer from the quartz

crystal shown in Fig. 4(a). These two wafers were ground,

etched and polished with identical procedures. Subsequently,

we performed rocking curve measurements of the two wafers

in the symmetric reflection geometry with an incident

synchrotron beam from an Si(111) DCM, as mentioned in x2.

The two rocking curves measured by rotating the quartz

wafers are shown in Fig. 3(c), where the 3039 reflection is,

indeed, much stronger than the 03�339 reflection. This again

confirms the crystallographic a axes we have determined in

Fig. 4(b). Note that the intrinsic Darwin widths of the two

reflections are much narrower in Fig. 3(a). In Fig. 3(c),

significant broadening of the two measured rocking curves is

mainly owing to the finite bandwidth and divergence of the

incident beam from the DCM. More specifically, the rocking

curves are broadened by the weak dependence of the wave-

length on the diffraction angle when the Bragg angle is close

to 90�.

The dashed lines in Fig. 3(c) are the simulated rocking

curves that include the convolution of the DCM and the

divergence of the white beam (15 mrad) incident on the DCM.

Here the 3039 diffraction intensities have been normalized to

the measured intensities. The measured rocking curve width of

0.177� is nearly the same as the simulation. With the same

normalization factor, however, the measured 0339 diffraction

intensities are noticeably lower than the theoretical intensities.

One possible reason for the discrepancies may be the extreme

sensitivity of quartz to thermal load, which is a severe disad-

vantage of quartz optics. Our experiments show that the direct

beam from the Si(111) DCM (with a bandwidth of �1.5 eV)

can remarkably broaden the rocking curve of quartz and

reduce the reflectivity. In the experiment of Fig. 3(c), the

incident beam was reduced by a chopper to 2.1% of the

original intensity, but the reduced heat load may still be too

high for quartz to work normally. Therefore, applications of

quartz for synchrotron X-ray monochromators will require

careful heat load management, although this is not necessary

for quartz analyzers.

Here note that the purpose of this simple experiment is

solely for distinguishing between the ð3039Þ and ð0339Þ wafers

from the integrated diffraction intensities, and it is not

intended for high-resolution measurements of the meV-level

bandwidths of the two reflections. In separate experiments, we

have used a four-bounce symmetric Si(844) monochromator

(with a bandwidth of �8 meV) after the Si(111) DCM to

further monochromatize the incident beam. Nearly theoretical

rocking curves of the 3039 reflection from the quartz wafer

were repeatedly measured using this 8 meV monochromatic

beam without thermal problems. In addition, we have

achieved a deconvoluted energy resolution of the 3039

reflection of 3.9 meV from the entire three-inch ð3039Þ wafer

in a novel RIXS setup, which is very close to the theoretical

value of 3.6 meV (Kim et al., 2017). These results clearly

demonstrate the feasibility of developing (ultra)high-resolu-

tion quartz analyzers in the medium-energy range.

4. Difference between h1h2h3L and h1h2h3L reflections

Quartz has no polarity along the c axis owing to the twofold

rotational symmetry along the a axes. However, since the

structure does not have centrosymmetry, it can be polar along

other directions. Meanwhile, the atomic scattering factor of Si,

fSi, has a significant imaginary part in the low- to medium-

energy range, which can cause anomalous scattering. For

example, at E = 6, 8, 10, 12, 14 and 16 keV, the values of Im(fSi)

are 0.57, 0.33, 0.22, 0.15, 0.11 and 0.085, respectively. Conse-

quently, the non-negligible imaginary part of fSi can cause the

breakdown of Friedel’s law for the noncentrosymmetric

quartz crystal, i.e. jFðg ¼ h1h2h3LÞj 6¼ jFð�g ¼ h1h2h3LÞj,

where F denotes the structure factor. As presented in Table S2,

most of the h1h2h3L and h1h2h3L reflection pairs (Friedel

pairs) indeed have nonzero Bragg peak reflectivity differences

�Rmax caused by the anomalous scattering effect. The differ-

ences can be quite remarkable for a number of reflections,

such as 1120, 1121, 3122, 3124, 3125, 4227, 7344, 7345 and 8177.

These reflections have j�Rmaxj> 0:1 with respect to their

opposite reflections �g, and the relative reflectivity difference

is even larger. However, except for the reflectivity difference,

a reflection pair h1h2h3L and h1h2h3L always have the same

bandwidth �EBW and angular Darwin width ��FWHM.

As an example, Fig. 7 shows the calculated Darwin curves of

reflections 1121 and 1121 at E = 8.05 keV (Cu K�1 radiation).

Here the two curves indeed have the same Darwin width,

��FWHM = 1.2600, but the two peak reflectivity values differ by

�Rmax = �0.145, or j�Rmax=Rmaxð1121Þj ¼ 20%. Such a

difference is measurable in high-resolution X-ray diffraction
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Figure 7
Calculated Darwin curves of quartz 1121 and 1121 reflections. E =
8.05 keV, �B = 20.15�, �-polarization.



(or double-crystal diffraction) from the two faces of a double-

side-polished ð1121Þ plate of quartz (De Vries, 1958).

Therefore, for those Friedel reflection pairs with significant

�Rmax, one must distinguish between the positive and nega-

tive surfaces, h1h2h3L and h1h2h3L, of a quartz crystal

(particularly for a parallel-sided plate) during crystal fabri-

cation. In general, the surface corresponding to larger reflec-

tivity should be used for X-ray diffraction to achieve better

efficiency. Nevertheless, �Rmax is small for most reflections of

quartz, which implies that differentiation between the h1h2h3L

and h1h2h3L surfaces may be unnecessary for these cases.

Here one can use Table S2 as guidelines even for non-back-

reflection geometry.

The upper spot indicated by a white arrow in Fig. 6(a) is the

g ¼ 2 1 3 11 reflection. With respect to the horizontal central

line, the 2 1 3 11 spot has a mirror spot in the lower part that is

the 3 1 2 11 reflection (identified by the other white arrow).

Here note that the 3 1 2 11 reflection is equivalent to

2 1 3 11 ¼ �g. This phenomenon is true for all the other

reflections, i.e. each reflection (g) spot in the upper part of the

(0001) Laue pattern in Fig. 6 has its negative reflection (�g)

spot symmetrically located in the lower part. Since �Rmax is

small or negligible for most reflections of quartz, the (0001)

backward Laue pattern should be nearly mirror symmetric

with respect to the horizontal central line, which is obviously

true in Fig. 6(a). But note that the Laue pattern has no mirror

symmetry about the vertical central line.

5. Left-handed quartz

The left-handed quartz structure is a mirror image of right-

handed quartz. Therefore, the unit cell of left-handed quartz

can be simply obtained by mirroring the right-handed atom

positions ðxi; yi; ziÞ with respect to any planes. For example,

the simplest transformation is ðxi; yi; ziÞ ! ðxi; yi;�ziÞ with

respect to the (0001) plane, or ðxi; yi; ziÞ ! ðyi; xi; ziÞ with

respect to the f1100g plane. As shown in Fig. S1 of the

supporting information, we choose to mirror the right-handed

structure to the left-handed one with respect to the ð1210Þ

plane, A in Fig. S1 [parallel to the a face in Fig. 4(a)], by the

transformation ðxi; yi; ziÞ ! ðxi; xi � yi; ziÞ, followed by a

partial translation of �c/3. Here the translation does not

change the crystal structure. Thus, the overall transformation

is ðxi; yi; ziÞ ! ðxi; xi � yi; zi � 1=3Þ. Applying this operation

on the right-handed quartz structure in x2, we find that the

three Si atoms of the left-handed unit cell are located at (u, u,

�1/3), (�u, 0, 0) and (0, �u, 1/3), while the six O atoms are

located at (x, x� y, z� 1/3), (y, y � x, 1/3 � z), (�y,�x, 1/3 +

z), (�x, �y, �z), (y � x, y, z) and (x � y, x, 2/3 � z), in the

same right-handed hexagonal coordinate system (still with u =

0.4699, x = 0.4141, y = 0.2681 and z = 0.1188). This unit cell

corresponds to the z(�) setting of left-handed quartz in the

right-handed hexagonal coordinate system of Donnay & Le

Page (1978). The benefit of choosing this special left-handed

unit cell (LH) is that any one of its structure factors is related

to that of the right-handed unit cell (RH) by

Fðh1h2h3LLHÞ � Fðh1h2h3LRHÞ: ð1Þ

This relationship indicates that X-ray diffraction from any

ðh1h2h3LÞ lattice plane of left-handed quartz is always

equivalent to diffraction from the opposite side of the corre-

sponding lattice plane, ðh1h2h3LÞ, of right-handed quartz.

Note that the two kinds of unit-cell configurations are

defined in the same right-handed a1–a2–a3–c coordinate

system. Therefore, if we perform Laue diffraction on the left-

handed (0001) quartz surface, we will obtain a Laue pattern

similar to Fig. 6 with the same a and c axes, except that each

reflection h1h2h3LRH in Fig. 6 will be replaced by reflection

h1h2h3LLH. According to equation (1), h1h2h3LLH is equiva-

lent to h1h2h3LRH. On the other hand, we have proved in x4

that each h1h2h3LRH spot in the upper part of Fig. 6 has a

mirror sport in the lower part that is equivalent to h1h2h3LRH.

Thus, the replacement of each reflection h1h2h3LRH in Fig. 6

by h1h2h3LRH (� h1h2h3LLH) simply results in a vertically

flipped pattern of Fig. 6. Therefore, the Laue pattern of the

left-handed (0001) quartz surface is simply a vertically flipped

pattern of the right-handed (0001) surface.

However, we have demonstrated above that, for most

reflections of quartz, the reflectivity difference between the

h1h2h3L and h1h2h3L reflections is small or even negligible, i.e.

the Laue pattern in Fig. 6 is almost symmetric with respect to

the central horizontal line. Thus, the vertically flipped pattern,

which is the Laue pattern of left-handed quartz, is nearly the

same as the original pattern of the right-handed quartz in Fig. 6.

In other words, if the reflectivity difference �Rmax between a

reflection pair h1h2h3L and h1h2h3L is negligible, which is true

for most reflections of quartz, it is usually unnecessary to

distinguish between the two types of handedness.

In some special cases where �Rmax cannot be ignored, one

must identify the handedness of the quartz crystal, which can

usually be determined by the natural crystal shapes (Akhavan,

2012), by the optical rotation method (Herschel, 1822) or by

the etch patterns (Van Dyke, 1940). From the above descrip-

tions, one can also use X-ray anomalous scattering to identify

the handedness (De Vries, 1958). This method consists of

three steps. First, the a axes can be determined from the

backward Laue pattern of the (0001) surface, independent of

the handedness (see Figs. 4 and 6). Second, on the basis of the

determined a and c axes, one can cut a ð1121Þ plate, followed

by identical double-side polishing. Third, one can perform

high-resolution rocking curve measurements from the two

surfaces ð1121Þ and ð1121Þ (for example, at E = 8.05 keV or

lower). From Fig. 7, if the measured Bragg intensity of the

1121 reflection from the front surface ð1121Þ is higher than

that from the back surface ð1121Þ, the crystal is of right

handedness. Otherwise, the crystal is of left handedness.

6. Summary

We have demonstrated that the �-quartz crystal has hundreds

to thousands of Bragg reflections in the medium-energy range,

compared to only a few tens of reflections for silicon. The

numerous reflections of quartz have various applications in
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X-ray optics, particularly for making high- to ultrahigh-reso-

lution near-back-reflection analyzers and fixed-diffraction-

angle X-ray polarizers at any energy. To design and fabricate

quartz-based X-ray optics, however, one must understand the

diffraction properties of the large number of Bragg reflections

and their relationships to the crystallographic structures. For

this purpose, we have used both theoretical calculations and

experiments to study the crystal symmetry of quartz, the

equivalent Bragg reflections, the bandwidth and reflectivity of

each reflection, etc. In particular, we have shown the use of the

Laue method (including simulation) to unambiguously iden-

tify the crystallographic a and c axes of quartz crystals. Only

after such accurate determination of the crystal orientation

can one correctly cut the ðh1h2h3LÞ surface without confusion

with the ðh2h1h3LÞ surface. Then we theoretically and

experimentally demonstrated the difference between the

h1h2h3L and h2h1h3L reflection pairs (including their different

bandwidths, reflectivity and angular acceptance) and illu-

strated the importance of differentiation between these two

types of reflections in fabrication of quartz X-ray optics.

We have also illustrated the anomalous scattering effect of

quartz, which can give rise to remarkable reflectivity differ-

ences between some of the h1h2h3L and h1h2h3L Friedel

reflection pairs. For applications of these reflections, one must

correctly distinguish between the front surface ðh1h2h3LÞ and

the opposite surface ðh1h2h3LÞ of a quartz crystal. Meanwhile,

it has been proved that any Bragg reflection of left-handed

quartz is exactly equivalent to the opposite reflection of right-

handed quartz, i.e. h1h2h3LLH � h1h2h3LRH. For the Bragg

reflections with significant anomalous scattering, therefore,

one must also identify the handedness of the quartz crystal,

which can be achieved by measuring the reflectivity difference

between the 1121 and 1121 reflection pairs. For those reflec-

tions with small or negligible anomalous scattering (which

should be verified by dynamical-theory calculations), it is

usually unnecessary to differentiate between the polarity of

the Bragg planes and the handedness of the quartz.

Finally, most of the general diffraction principles of quartz

illustrated above may also apply to sapphire (space group

R3c) and lithium niobate (space group R3c), which likewise

have trigonal crystal symmetry.
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