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Lattice strain 
The top layers of Pt(111) surface relax or contract depending on the applied potentials. Even 
though the overall strain is much less than 1%, it modifies the crystal truncation rods (CTR) 
intensity. However, it affects mainly the intensities near Bragg peaks and has little influence on 
the intensities near anti-braggs. The intensities near anti-bragg are determining factors for the 
electrochemical double layers. 

 
Figure S1 The relative strain change of the first two layers of the Pt (111) substrate determined 
by the inversion method described in the main text. The applied potentials are vs. Ag/AgCl 
reference electrode in 3 M KCl. 
 

Property of Hilbert transformation for z<0 
Let us define 𝑓𝑓+ = 𝑓𝑓+′ + 𝑖𝑖𝑓𝑓+″ and 𝑓𝑓− = 𝑓𝑓−′ + 𝑖𝑖𝑓𝑓−″ to be the Fourier transformations of 𝜌𝜌+(𝑧𝑧) 
and 𝜌𝜌−(𝑧𝑧), respectively. The real part of 𝑓𝑓ana = 𝑓𝑓+ + 𝑓𝑓_ is different from 𝑓𝑓+′ + 𝑓𝑓−′ because 
−𝐻𝐻[𝑓𝑓+″ + 𝑓𝑓−″] = 𝑓𝑓+′ − 𝑓𝑓−′ when the electron density also exists in the negative coordinate. This 
relation is clear from the following transformation: 𝐻𝐻[𝑓𝑓−″] = −𝐻𝐻�Im[𝑓𝑓−∗]� = −(−Re[𝑓𝑓−∗]) = 𝑓𝑓−′, 
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where a star denotes the complex conjugate. The conversion is based on the fact that 𝜌𝜌−(−𝑧𝑧), 
whose Fourier transform is 𝑓𝑓−∗, has the value only in the positive coordinate and Eq. (2) can be 
applied. 
 

Numerical inversion of an interphase structure with lattice strain 
A numerical inversion was performed for a structure of the interphase with the lattice strain in 
the substrate. The parameters for the interphase structure and strain were same as those used in 
the individual numerical simulations as in the main text. A normalized CTR intensity was 
calculated using the model electron density (see blue broken line in Fig. S2). Otherwise, it was 
analyzed in the same manner as mentioned in the main article. In the reconstructed electron 
density distribution, the interphase structure includes the lattice strain inverted to the positive 
coordinate (see arrows in Fig. S2) and there is no electron densities for the negative coordinate. 
The final electron density distribution of the interphase structure was obtained by subtracting 
the sharp features from the strain (orange solid line in Fig. S2). While the lattice strain causes a 
small discrepancy between the model and reconstructed electron densities, the reconstructed 
electron density is still in excellent agreement with that of the model. The determined strain 
values were 0.0095, 0.0058 and 0.00067 for 1st, 2nd and 3rd substrate layers, respectively, 
while the assumed strain values were 0.01, 0.05 and 0.001.  
 

 

Figure S2. A model electron density distribution including lattice strain in the substrate (blue 
broken line), the reconstructed distribution by analyzing the scattering data (orange dotted line), 
and that after the sharp lattice strain is subtracted (orange solid line). Arrows indicate the 
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contribution from the lattice strain that was inverted through the analysis.  
 

Codes for analyses 
The code used in the present analysis was developed with R2014a with Optimization Toolbox 
and Signal Processing Toolbox. The main program is “main_ctr_anal_for_...”, where analysis 
parameters such as a lattice spacing and some options should be set in advance to execute. The 
typical parameters for corresponding sample data have been already entered. Thus, using this 
prepared script will reproduce a part of the analysis performed in this study. Just after executing 
the main script, a user interface appears in order to choose a data file. The current code accepts a 
set of text data that has no header and three columns delimited by tabs. The first, second, and 
third columns are l, normalized intensity, and error, respectively. The errors are only used for the 
error propagation calculation for the result. It can be therefore zero when using a simulated 
scattering data. The other parameters for the analysis are input interactively during the analysis. 
The first question is about the absorption factor used for calculating the structure factor of a 
substrate. In the present analysis, the effect of the absorption was negligible because of a 
relatively high photon energy. The second question is for the forward Fourier transform 
calculation, i.e., the Fourier transform from the reconstructed electron density to the scattering 
factors. It was implemented in order to estimate the contribution from a certain electron density 
to the scattering. By limiting the range of the Fourier transform, the structure factors only from 
the region are compared with the original experimental data. This comparison can be skipped by 
inputting Return. The graphs for the results appearing at the end of the analysis are saved if the 
saving option is selected. The saved result is stored in a new folder whose name is same as that 
of the input data, in the same directory of the input data. If the older result folder exists, the 
program will rename to avoid overwriting. 
 

Application for X-ray reflectivity 
   The reflectivity of X-ray and neutron scattering within the Born approximation is described 
as follows (Als-Nielsen & McMorrow, 2011):  
 
 𝑅𝑅(𝑄𝑄) = 𝑅𝑅F(𝑄𝑄)|Φ(𝑄𝑄)|2, (S1) 

 
where 𝑄𝑄  is length of a scattering vector defined as 𝑄𝑄 ≡ 4𝜋𝜋 sin𝜃𝜃 /𝜆𝜆 , 𝑅𝑅F  is the Fresnel 
reflectivity, and Φ is the Fourier transform of the derivative of the electron density distribution. 
This is given by  
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 Φ(𝑄𝑄) = �
d𝜌𝜌
d𝑧𝑧

exp(𝑖𝑖𝑄𝑄𝑧𝑧)dz
∞

−∞
, (S2) 

 
where 𝑧𝑧 is the distance from the substrate surface, 𝜌𝜌 is the electron density distribution along 
z direction. Since 𝜌𝜌 is a sum of the electron densities of the substrate, 𝜌𝜌s, and interphase layers, 
𝜌𝜌l, Φ is further expanded to Φ = 𝑖𝑖𝑄𝑄(𝐹𝐹 + 𝑓𝑓), where F and f is the Fourier transform of 𝜌𝜌s and 
𝜌𝜌l, respectively. Thus, the normalized XRR spectrum is further described as follows:  
 

 
|𝐹𝐹|
2 �

|Φ|2

𝑄𝑄2|𝐹𝐹|2 − 1� =
𝐹𝐹′

|𝐹𝐹|𝑓𝑓
′ +

𝐹𝐹″

|𝐹𝐹|𝑓𝑓
″ +

𝑓𝑓′2 + 𝑓𝑓″2

2|𝐹𝐹| . (S3) 

 
This equation is similar to Eq. (1) in the main text for CTR and can be solved with known 
structure factor of F, the Hilbert transform given in Eq. (2) and (3) in the main text and 
experimentally obtained XRR profile. The structure factor of the substrate is given by the 
Fourier transform of the step function as follows:  
 

 𝐹𝐹 = � 𝜃𝜃(−𝑧𝑧) exp(𝑖𝑖𝑄𝑄𝑧𝑧) d𝑧𝑧
∞

−∞
= 𝜋𝜋𝜋𝜋(𝑄𝑄) − 𝑖𝑖P �

1
𝑄𝑄�

. (S4) 

 
where 𝜃𝜃(−𝑧𝑧) is the step function, 𝜋𝜋 is the Dirac’s delta function and P{} denotes the Cauchy 
principal value. In the practical analysis, the first term on the right-hand side of Eq. (S4) is 
neglected because one can only measure the region of 𝑄𝑄 > 0. Thus, the first term on the 
right-hand side of Eq. (S3) vanishes, and the third term can be neglected when the density of the 
interphase layer is much smaller than that of the substrate, which gives an initial solution of  
 

 𝑓𝑓″ ∼
1

2𝑄𝑄
(|Φ|2 − 1) (S5) 

 
for the subsequent numerical solver.  
   Numerical simulation was performed to demonstrate the present analysis method for XRR. 
A normalized XRR profile of a three-layer film (see Fig. S3(b)) was calculated based on Eq. 
(S2) (see Fig. S3(a)). Then, the structure factor of the film was determined by numerically 
solving Eq. (S3) with the Hilbert transform, and the electron density distribution was 
reconstructed from the determined structure factor through the Fourier transform. The originally 
assumed normalized reflectivity profile was almost identical to that obtained from the 
reconstructed electron density distribution (see Fig. S3(a)), which indicates the formulas of the 
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structure factors were successfully solved numerically. The reconstructed electron density 
distribution was also in excellent agreement with that originally assumed, where the small 
discrepancy is mainly derived from the numerical derivation in Eq. (S2). Thus, the direct 
inversion method using the Hilbert transform in the present study is also applicable to XRR 
within the kinematical limit.  
 
 

 
 
 

Multiple solutions in the scattering formula 
   Multiple solutions may simultaneously satisfy the scattering formulas. In this case, it is 
impossible to determine uniquely the original electron density distribution without additional 
information or a priori knowledge. When 𝑓𝑓 is a solution of the scattering formulas such as Eq. 

(1) in the body text or Eq. (S3), 𝑓𝑓 = 𝛼𝛼(𝑄𝑄)𝑓𝑓 is also a solution of these formulas, where 𝛼𝛼(𝑘𝑘) 
is a complex function of 𝑘𝑘 holding the following relation  
 
 |𝑓𝑓|2(|𝛼𝛼|2 − 1) + 2(𝛼𝛼′ − 1)𝑓𝑓″𝐹𝐹″ + 2𝛼𝛼″𝑓𝑓′𝐹𝐹″ = 0. (S6) 

 
𝛼𝛼′ and 𝛼𝛼″ are the real and imaginary part of 𝛼𝛼, respectively. Real values of 𝛼𝛼 other than a 
trivial solution, i.e., 𝛼𝛼 = 1, can be solved as 𝛼𝛼 =  −(|𝑓𝑓|2 + 2𝑓𝑓″𝐹𝐹″)/|𝑓𝑓|2 and it gives multiple 
solutions of 𝑓𝑓 in the scattering formula. Notably this is not a specific problem of the present 

Figure S3. (a) A simulated X-ray reflectivity profile. The inset exhibits the normalized 
spectrum from the simulation (blue broken) and that obtained from the reconstructed 
electron density (orange solid) with offset of 0.1. (b) Electron density profiles of the original 
object (blue broken), the reconstructed object (orange solid) and the substrate (black dot).  
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analysis method but a general problem in the whole CTR and XRR analyses.  
   This multiple solution is more critical in the XRR analysis. For example, when a single layer 
with relative electron density of 𝑟𝑟 to the substrate whose thickness is 2𝑤𝑤 exists on the 
substrate, the structure factors are as follows: 𝑓𝑓 = 2𝑟𝑟 sin(𝑤𝑤𝑄𝑄) exp(𝑖𝑖𝑤𝑤𝑄𝑄) /𝑄𝑄 and 𝐹𝐹 = −𝑖𝑖/𝑄𝑄. 

Then, 𝛼𝛼 = (1 − 𝑟𝑟)/𝑟𝑟 is a solution of Eq. (S6) and it gives another structure factor of 𝑓𝑓 =
𝛼𝛼𝑓𝑓 = 2(1 − 𝑟𝑟) sin(𝑤𝑤𝑄𝑄) exp(𝑖𝑖𝑤𝑤𝑄𝑄) /𝑄𝑄, which simultaneously satisfies the scattering formula. It 
shows that it is impossible to distinguish the layer with relative density of 𝑟𝑟 from that with 
1 − 𝑟𝑟 only from the experimental data. When the interphase structure is known to be much 
lighter than the substrate, initial solutions given in Eqs. (4) or (S5) can be used and the 
numerically solved structure factor must reflect the actual structure. Otherwise, an appropriate a 
prior constraint is required to determine uniquely the structure.  
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