XPCS CONTIN

June 2, 2017

1 Quick Start - Install and Run Test Data $\mathbf{2}$ 2Running TestData2.... 1.1 1.2Running Other Test data 13162 Program Description 2.1162.2Detailed Installation Instructions 172.3Modifications to CONTIN/MULTIQ 18 **3** Detailed Operation **19** 193.13.2193.3Methods of Analysis - Defining the Kernel 193.4243.5243.625

Contents

1 Quick Start - Install and Run Test Data

1.1 Running TestData2

This section assumes presence of the folder Program_Distribution.

1. Start the program

Open the Program_Distribution folder and double click RunXPCS_CONTIN.bat. After a brief delay, the following GUI appears.

2. Load the data

Import Data	Select g2	1	* *	Remove	

Click Import Data, navigate to the TestData folder, and open the file named TestData2.g2ASCII.

Loading the data populates (a) and (b) with the Kohlrausch fitting parameters from the data set and (d) with the g_2 data. Best fit lines to q and q^2 are shown on the plot of the Kohlrausch exponential relaxation rate (a). Different g_2 (different q points) may be selected by clicking up or down the Select g2 window. The selected q point is highlighted in blue in the 3D plot (d) and shown by points in (f).

3. Process using CONTIN - Inverse Laplace Transform

Select $\mathbf{q}^{\mathbf{0}}\mathbf{0}$ for the first distribution and increase the number of bins to **120**. Pressing **Run CONTIN Batch** solves the inverse Laplace transform for each g_2 individually, giving a $\Psi(\Upsilon)$ for each g_2 .

CONTIN/MULTIQ Transform and MULTQ Kernel q Dependence
First Distribution (CONTIN/MUTIQ): Exp
@ q^0 (CONTIN) ○ q^1 ○ q^2 ○ q^3 ○ q^ 0.00 ♀ □ S(q) File
Add Second Distribution (MULTIQ): O Exp Gauss e^ 1.00
q^0
Distribution Solution Log(Upsilon) = -7.00 🚖 to 7.00 🖨 Bins 120 🖨
Lagrange Multiplier 💿 Search points 30 🐳 💿 Fix @ 10^ -7.00 후
Background 🔘 None 🔘 Single 💿 Multiple
Weights 💿 None 💿 Poisson 💿 Constant 💿 Input 💿 Internal
Run CONTIN Batch Run MULTIQ Stop Export Reset
Result Rescale MULTIQ Rescale CONTIN by q^ -2.00
Lagrange Multiplier Used - 51 Probability to Reject
Sum Deviations

In the terminal window, the following appears

BATCH 1 of 18 in thread <some number> '....COMPLETED BATCH 1 of 18 in thread <some number> BATCH 2 of 18 in thread <some number> '....COMPLETED BATCH 2 of 18 in thread <some number> etc.

All the thread numbers should be the same - if not, increase the value of the waiting time time.sleep(1) at line 5588 in XPCS_CONTIN20v11.py, so Python will wait a little longer for the Fortran backend to finish and avoid spawning another thread.

The selections above correspond to the model shown in Equation 1, where *a* is the background. For CONTIN, selecting **Multiple** for **Background** is equivalent to **Single**; selecting **None** will set a = 0. The unnormalized distributions $\Psi(\Upsilon)$ will include the contrast term, and $\beta = 1$.

$$g_2(t) = a + \beta \int_{10^{-7}}^{10^7} \Psi(\Upsilon) \exp\left[-\Upsilon t\right] \, d\Upsilon \tag{1}$$

Fitting results in a distribution $\Psi(\Upsilon)$ for each input g_2 , shown in (e); (f) shows the original data, fit, and fitting residuals for a single q point selected by the **Select g2** dialog box.

Inverse Laplace transformation gives a poor result, as shown by the fit to the data in (f). Though the distribution has a sharp peak, the fit decays more slowly than the data, suggesting use of an inverse Gaussian transform – the sharp peak comes from CONTIN try to get the fit as close as it can to the data; however, because the positivity constraint on the solution $\Psi(\Upsilon)$, faster than exponential decays cannot be inverse Laplace transformed.

4. Process using CONTIN - Inverse Gaussian Transform

Faster than exponential dynamics suggest use of an inverse Gaussian transform. Select **Gauss** and press **Run CONTIN Batch**. The program will perform inverse Gaussian transformation on each g_2 individually, and give a series of distributions $\Psi(\Upsilon)$.

The selections above correspond Equation 2, where again $\beta = 1$.

$$g_{2}(t) = a + \beta \int_{10^{-7}}^{10^{7}} \Psi(\Upsilon) \exp\left[-\Upsilon t^{2}\right] d\Upsilon$$
(2)

The result is a series of distributions of Gaussian functions (e) that gives a good fit (f) to the data.

The panel (h) shows the values found for each background a as a function of q, along with the relative goodness of fit χ^2 . The two spikes in χ^2 correspond to the two noisy g_2 s visible in (d).

Autocorrelation functions typically have some dependence on length scale q. For classical or ballistic diffusion, we expect to find $\propto q^2$. CONTIN XPCS allows testing for simple q^n dependency from the sequential CONTIN result. Check the box **Rescale CON-TIN by q^**, and enter **-2.00** in the input box.

Checking this box rescales all the distributions in panel (e) by their corresponding measurement q value. In this case, the distributions coalesce around a single point.

5. Process using MULTIQ - Inverse Gaussian Transform

Collective MULTIQ analysis attempts to fit a single model to all the data sets. Click q^2 in the first distribution and press **Run** MULTIQ.

CONTIN/MULTIQ Transform and MULTQ Kernel q Dependence
First Distribution (CONTIN/MULTIQ): 🔘 Exp 💿 Gauss 🔘 e^ 1.00 🜩
© q^0 (CONTIN) ◎ q^1 💿 q^2 ○ q^3 ◎ q^ 0.00 ≑ 🔲 S(q) File
Add Second Distribution (MULTIQ): O Exp Gauss O e^ 1.00 -
Distribution Solution Log(Upsilon) = -7.00 🚖 to 7.00 🜩 Bins 120 🜩
Lagrange Multiplier Search points 30 Fix @ 10^ -5.00
Background 🔘 None 🔘 Single 💿 Multiple
Weights 🔘 None 🔘 Poisson 🔘 Constant 💿 Input 🔘 Internal
Run CONTIN Batch Run MULTIQ Stop Export Reset
Result Cescale MULTIQ Rescale CONTIN by q^ -2.00
Lagrange Muldplier Used - Probability to Reject
Burn Deviations
•

The selections correspond to the model below, where the **Multiple** selection for **Background** corresponds to a(q).

$$g_2(q,t) = a(q) + \beta(q) \int_{10^{-7}}^{10^7} \Psi(\Upsilon) e^{-\Upsilon q^2 t^2} d\Upsilon$$
(3)

The bimodal result for $\Psi(\Upsilon)$ shown in (e) gives a good fit to the data; (f) shows the fit at the q point highlighted in panel (d). Changing the value in **Select g2** allows viewing the fit and data at other q points. Panel (g) shows the progression of degrees of freedom (number of good parameters, N_g), goodness of fit χ^2 and Provencher's rejection probability metric $\mathcal{P}_{\rm rej}$ as a function of log Lagrange multiplier Λ . The $\mathcal{P}_{\rm rej}$ metric defines the ideal result as that at $\mathcal{P}_{\rm rej} = \frac{1}{2}$, shown by a vertical line in (g) Panel (h) shows the values for the relative scaling factor $\beta(q)$ and backgrounds a(q) as a function of q, along with the relative χ^2 – again, the spikes in χ^2 come from the two noisy g_2 s in (d).

6. Process using MULTIQ - Inverse Gaussian Transform

Collective analysis with a single distribution gave a good global fit to the data. In some cases, it may be useful to test competing hypothses, if only to gain some measure of confidence in the result. For example, if MULTIQ had the option of including another distribution with different q dependency – or even another type of transform – this would give some measure of the significance of the original fit. For example, one may question the degree to which the data in the last example actually requires q^2 dependency. To test this, we allow MULTIQ the option of using a second distribution without q dependence.

Check the box Add Second Distribution, click Gauss for the second transform and q^0 for the second distribution q dependence.

CONTIN/MULTIQ Transform and MULTQ Kernel q Dependence	
First Distribution (CONTIN/MULTIQ): 🔘 Exp 💿 Gauss 🔘 e^ 1.00 荣	
© q^0 (CONTIN) © q^1 ● q^2 © q^3 © q^ 0.00 荣 🔲 S(q) File	
Add Second Distribution (MULTIQ): ○ Exp Exp Gauss ○ e^ 1.00	
() q^1 () q^2 () q^3 () q^ 2.00 €	
Distribution Solution Log(Upsilon) = -7.00 + to 7.00 + Bins 120 +	
Lagrange Multiplier Search points 30 Fix Fix 10^ -5.00	
Background 🔘 None 🔘 Single 💿 Multiple	
Weights 🔘 None 🔘 Poisson 🔘 Constant 💿 Input 🔘 Internal	
Run CONTIN Batch Run MULTIQ Stop Export Reset	
Result Rescale MULTIQ Rescale CONTIN by q^ -2.00	
Lagrange Multiplier Used -4,23 Probability to Reject	
sum Deviations	

These selections correspond to the model below.

$$g_2\left(q,t\right) = a + \beta \int_{10^{-7}}^{10^7} \underbrace{\Psi(\Upsilon)e^{-\Upsilon q^2 t^2}}_{1^{\text{st}}} + \underbrace{\Psi'(\Upsilon)e^{-\Upsilon q^0 t^2}}_{2^{\text{nd}}} d\Upsilon \qquad (4)$$

Press **Run MULTIQ**, and the program will repeat the analysis using the new model. Panel (e) now shows the result in terms of two distributions, $\Psi(\Upsilon)$ (first, red) and $\Psi'(\Upsilon)$ (second, blue). The first q^2 -dependent distribution remains essentially the same as determined before, and the new q^0 -dependent distribution remains essentially flat, meaning that the data do not support any dynamics that are independent of length scale.

7. Process using MULTIQ - Check Lagrange Multiplier

Though we find that CONTIN's automatically generally selects the most reasonable value for the Lagrange multiplier Λ , the user should verify the result by observing changes in the solution as a function of Λ .

$$V(\Lambda) = \underbrace{\chi^2}_{\text{Fit}} + \Lambda \underbrace{\int \left(\frac{d^2\Psi(\Upsilon)}{d\Upsilon^2}\right)^2 + \left(\frac{d^2\Psi'(\Upsilon)}{d\Upsilon^2}\right)^2 d\Upsilon}_{\text{Smoothness}}$$
(5)

To observe the effect of Λ on the solution, select the **Fix @ 10**[^] radio button, click down to **-5.0**. This will rerun the analysis, but, instead of searching for Λ using the rejection probability metric, the program will use the value selected. This will provide solutions for $\Psi(\Upsilon)$ and $\Psi'(\Upsilon)$ from minimization of $V(\Lambda = 10^{-5.0})$.

Press **Run MULTIQ**. The result shown in the windows (e) and (g) is shown below. The vertical black line in (g) shows the selected value of $\Lambda = 10^{-5.0}$, and the vertical magenta line shows CONTIN's original selection of $\Lambda = 10^{-4.23}$. The solution window (e) compares CONTIN's solution at $\Lambda = 10^{-4.23}$ (red) with that from the selection of $\Lambda = 10^{-5.0}$ (green). Referring to (g) and Equation 5, smaller values of the Lagrange multiplier cause less weighting of the smoothness constraint and more weighting of fit to the data. Consequently, the result in (e) becomes sharper (green curve) than the original (red). However, the data alone do not justify a sharper distribution – observing chi^2 in (g) shows that the smoother result in red has an only slightly increased χ^2 .

1.2 Running Other Test data

Here we illustrate analysis of the test data to generate the results shown in our publication describing the XPCS inverse transform technique.

Dilute spheres

The file TestData.g2ASCII contains the $g_2(q, t)$ measured from a sample of dilute monodisperse spheres. MULTIQ analysis according to the model below gives a single q^2 distribution of simple exponential functions.

$$g_2(q,t) = a + \beta \int \Psi(\Upsilon) e^{-\Upsilon q^2 t} + \Psi'(\Upsilon) e^{-\Upsilon q^0 t} d\Upsilon$$
(6)

Import the TestData.g2ASCII, and select Exp and q² for the first distribution and Exp and q⁰ for the second. Press Run MULTIQ, and the following result appears. MULTIQ assigns most all the intensity to the q^2 -dependent distribution of simple exponential functions. This result, but from inverse transformation without the use of the second distribution $\Psi'(\Upsilon)$, appears in §2.1.5 and Figure 6 of our original manuscript.

Bimodal Compressed Exponential Relaxation

The file **TestData3.g2ASCII** contains the $g_2(q, t)$ measured from a sample of a colloidal gel. The g_2 s show two obvious relaxations, so the single Kohlrausch fit shown gives a misleading result of stretched exponential relaxation; using two Kohlrausch functions reveals that two compressed exponential decays. Attempting inverse Laplace transformation results in a poor fit to the data – the curvature of the data appears sharper than a Laplace transform of a sharp distribution that CONTIN will find in a fitting attempt. Instead, the following inverse Gaussian transform model gives a good fit to the data.

$$g_2(q,t) = a(q) + \beta(q) \int \Psi(\Upsilon) e^{-\Upsilon q^2 t^2} + \Psi'(\Upsilon) e^{-\Upsilon q^0 t^2} d\Upsilon$$
(7)

Import the TestData3.g2ASCII, and select Gauss and q² for the first distribution and Gauss and q² 0 for the second. Press Run MULTIQ, and the following result appears. MULTIQ assigns most all the intensity to the q^2 -dependent bimodal distribution of Gaussian functions. This result, but without the use of the second distribution $\Psi'(\Upsilon)$, appears in §2.2.4 and Figure 10 of our original manuscript.

Subtle Bimodal Compressed Exponential Relaxation

The file **TestData4.g2ASCII** contains the $g_2(q, t)$ measured from a sample of a colloidal gel. Analysis with inverse Laplace transform gives a poor fit to the data, shown below.

The inverse Gaussian transform gives a good bimodal fit to the data.

$$g_2(q,t) = a(q) + \beta(q) \int \Psi(\Upsilon) e^{-\Upsilon q^2 t^2} + \Psi'(\Upsilon) e^{-\Upsilon q^0 t^2} d\Upsilon$$
(8)

Import the TestData4.g2ASCII, and select Gauss and q^2 for the first distribution and Gauss and q^0 for the second. Press Run MULTIQ, and the following result appears. This result (but without the use of the second distribution $\Psi'(\Upsilon)$) appears in §2.3.3 and Figure 15 of our original manuscript.

2 Program Description

XPCS CONTIN uses Python to pass commands to a modified version the Fortran program CONTIN MULTIQ compiled as a standalone executable. Python writes the data and parameters to STDIN using Brandon Arnold's FortranFormat and parses the results that are passed to various .scratch files in the program directory. The file terminalOutput.scratch records the classic ASCII terminal output from CONTIN MULTIQ; this file is not used by the Python program.

Strange things happen if some other program (perhaps a backup or cloud sync) tries to read or write to files used by Python and Fortran to exchange data during the run.

2.1 Input Data Format Requirements

Autocorrelation Data

XPCS CONTIN requires an input data array with the following format.

q_1	q_2	q_3	• • •	q_n	0	• • •	0	0
t_1	$g_2(q_1, t_1)$	$\sigma(q_1, t_1)$	•••	$g_2(q_{\frac{n}{2}},t_1)$	$\sigma(q_{\frac{n}{2}},t_1)$		$g_2(q_n, t_1)$	$\sigma(q_n, t_1)$
t_2	$g_2(q_1, t_2)$	$\sigma(q_1, t_2)$		$g_2(q_{\frac{n}{2}},t_2)$	$\sigma(q_{\frac{n}{2}},t_2)$		$g_2(q_n, t_2)$	$\sigma(q_n, t_2)$
:	:	:	·	:	:	·	:	:
t_m	$g_2(q_1, t_m)$	$\sigma(q_1, t_m)$		$g_2(q_{\frac{n}{2}}, t_m)$	$\sigma(q_{\frac{n}{2}}, t_m)$	•••	$g_2(q_n, t_m)$	$\sigma(q_n, t_m)$

The first column contains the lag times t corresponding to all the g_2 measured, the remaining columns contain the $g_2(q,t)$ and error $\sigma(q,t)$ at each q point. The top row contains of the q points of the measurement followed by zeros. At Argonne, modification the XPCSGUI MATLAB program as shown below gives the output .g2ASCII file in the format required for XPCS CONTIN.

Changes for use with Argonne's XPCSGUI

In the Ascii_from_XPCSGUI.m MATLAB subroutine, replace

```
70 end
71 dlmwrite(g2_ascii_filename,[delay',g2_and_g2Error],'\t');
72 end
73 end
```

with

70 end 71 dynamicQrev=zeros(1,2*numel(dynamicQs)+1); 72 dynamicQrev(1:numel(dynamicQs))=dynamicQs'; 73 dlmwrite(g2_ascii_filename,vertcat(dynamicQrev,[delay',g2_and_g2Error]),'\t'); 74 end 75 end This appends the q points (the "dynamic qs") at which the autocorrelations were measured as a row at the top of the array.

Optional Input Data

XPCS CONTIN will look for the fit file **.TAUFIT2ASCII** and the static SAXS data **.IQASCII** for plotting in the GUI corresponding to the g_2 file. These files serve only to generate plots on the GUI, so their absence has no effect on the rest of the program – the plots (a) and (b) simply remain empty.

2.2 Detailed Installation Instructions

Do not run the executable XPCS_CONTIN.exe - this is the backend called by Python; if called from a terminal, it will sit idle and do nothing.

Installation From Distribution

This section assumes the presence of the folder Program_Distribution.

The Program_Distribution folder contains three subfolders, XPCS_CONTIN, SourceCode, TestData and a batch file RunXPCS_CONTIN.bat. The subfolder XPCS_CONTIN contains the python program XPCS_CONTIN20v11.py, an entire distribution of Python 2.7.10 and the compiled Fortran executable XPCS_CONTIN.exe. This executable seems portable, as it ran successfully on a variety of different Windows 7 and 10 machines.

To run the program, double click RunXPCS_CONTIN.bat.

Installation From Supporting Information

This section assumes that you have Python 2.7.10 installed; other Python versions might work (but probably not Python 3.x.x). If something goes wrong, use the option above that includes a complete distribution of Python.

The supporting information contains XPCS_CONTIN.exe and XPCS_CONTIN20v11.py. Ensure the presence of these two files in the same folder, then run the python program by typing python XPCS_CONTIN20v11.py at the prompt in this folder.

Installation From Source Code

On Windows 7, GNU Fortran (GCC) 4.8.2 (i686-4.9.0-posix-dwarf-rt_v3-rev2) compiled the Fortran backend to XPCS_CONTIN.exe, the executable called by python using the following command.

gfortran -w -static -O3 -o XPCS_CONTIN XPCS_CONTIN14v15.f

Other Fortran compilers will probably work.

Ensure the presence of XPCS_CONTIN.exe and XPCS_CONTIN20v11.py in the same folder, and run the python program by typing python XPCS_CONTIN20v11.py at the prompt in this folder.

2.3 Modifications to CONTIN/MULTIQ

Modifications to the original CONTIN MULTIQ include increasing dimensions of the arrays, changing the kernel to accommodate arbitrary Kohlrausch exponents and q dependencies, insertion of read/write statements allowing communication between Python and Fortran, and read/write and spline functions for S(q) supporting the new kernel USERK, shown below.

895	FUNCTION USERK (JT,T,JG,G)	0643
896	DOUBLE PRECISION PRECIS, RANGE	0644
897	DOUBLE PRECISION qDepKern,qIndKern	
898	DOUBLE PRECISION qDepKernQDepend,qIndKernQDepend	
899	LOGICAL usingSqFlag	
900	REAL sqInputVals(2,500), sqSplineDerv(500)	
901	INTEGER mtotinSq	
	<<< ORIGINAL CONTIN PREAMBLE >>>	
925	COMMON /userInput/qDepKern,qIndKern	
926	COMMON /userInput2/qDepKernQDepend,qIndKernQDepend	
927	COMMON /usingSqGrid/usingSqFlag,sqInputVals, sqSplineDerv,mtotinSq	
928		
929	DATA IHOLER/1HU, 1HS, 1HE, 1HR, 1HK, 1H /	0662
930	IF (JT.GT.NY .OR. JG.GT.NG+1 .OR. MINO(JT,JG).LE.O) CALL	0663
931	1 ERRMES (1,.TRUE., IHOLER, NOUT)	0664
932		
933	ruser(51)=1.	
934	userk=0.	
935		
936	DO 110 idset=1.iuser(20)	
937	IF (it .LE. iuser(20+idset)) GD TD 150	
938	110 CONTINUE	
939	CALL ERRMES (9. TRUE., IHOLER, NOUT)	
940	150 CONTINUE	
941		
942	IF (luser(29) .AND. 2*ig.gt.ng) THEN	
943	ex=g(ig)*(t(it)**aDepKern)*(ruser(50+idset))**aDepKernQDepend	
944	USERK=formf2(it.t.jg.g)*EXP(-EX)	
945	RETURN	
946	ELSE	
947	EX=g(ig)*(t(it)**aIndKern)*(ruser(50+idset))**aIndKernDDepend	
948	IF (usingSoFlag) THEN	
949	CALL splint(sglnputVals(1.1:mtotinSg)	
950	2 saInputVals(2 1:mtotinSa) saSplineDerv mtotinSa	
951	3 ruser(50+idset) sqValueFound)	
952	FX = FX/sqValueFound	
953	FNDIF	
954	<pre>UISERK=formf2(it t ig g)*FXP(-FX)</pre>	
955	RETURN	
956	FND TF	
957	FND	
001		

CONTIN XPCS retains formf2(jt,t,jg,g)=1. for all jt, t, jg, g.

3 Detailed Operation

3.1 Starting Program

At the end of any of the three installation options, the file XPCS_CONTIN20v11.py exists in the same directory as the compiled Fortran executable XPCS_CONTIN.exe. Open a terminal window in this directory and type python XPCS_CONTIN20v11.py. If you used the installation option that includes a full Python distribution, the system should use this Python version (rather than any other installed on your system). After a brief delay, the following GUI should appear.

3.2 Importing Data

Clicking the button **Import Data** opens a dialog box for selection of the file containing the autocorrelation data as an array in the format described above. Argonne uses the file extension .g2ASCII for this data, but XPCS CONTIN ignores the extension and will try to import whatever text file selected.

* *	Remove
	·

The **Select g2** box allows selection of a particular q point, shown in blue in the 3D plot, and also in the panel showing the fit to the data in the upper right. Selecting a g_2 and clicking **Remove** will remove one or more g_2 from the CONTIN MULTIQ input.

3.3 Methods of Analysis - Defining the Kernel

CONTIN XPCS uses one of four different inverse transform models. Batch analysis applies inverse transform analysis to each q point individually and gives a set of solutions $\Psi(\Upsilon)$, one for each individual g_2 . Single distribution analysis attempts to fit all the g_2 s simultaneously using a single distribution $\Psi(\Upsilon)$ with a predefined q dependence. Analysis with two distribution attempts to fit all the g_2 s simultaneously using a two distributions $\Psi(\Upsilon)$ and $\Psi'(\Upsilon)$, where each one has a predefined q dependence. Finally, use of an external model, for example a structure factor S(q), for q dependency allows testing of more complicated hypothesis.

$$g_2(t) = a + \beta \int \Psi(\Upsilon) e^{-\Upsilon t^{\xi}} d\Upsilon$$
(9)

$$g_2(q,t) = a + \beta \int \Psi(\Upsilon) e^{-\Upsilon q^n t^{\xi}} d\Upsilon$$
(10)

$$g_2(q,t) = a + \beta \int \Psi(\Upsilon) e^{-\Upsilon q^n t^{\xi}} + \Psi'(\Upsilon) e^{-\Upsilon q^{n'} t^{\xi'}} d\Upsilon$$
(11)

$$g_2(q,t) = a + \beta \int \Psi(\Upsilon) e^{-\Upsilon q^n t^{\xi} S(q)^{-1}} + \Psi'(\Upsilon) e^{-\Upsilon q^{n'} t^{\xi'}} d\Upsilon$$
(12)

Batch Analysis

Individual batch analysis performs an inverse transform on each individual g_2 sequentially. For this, the user must specify a value for the time exponent ξ . The time exponent should specify either a Laplace ($\xi = 1$) or Gaussian ($\xi = 2$) transform, unless a (compelling) reason exists to choose some other value. CONTIN converts the model into matrix form $\mathbf{b} = A\mathbf{x}$ as shown below.

$$g_{2}(t) = a + \beta \int_{0}^{\infty} \Psi(\Upsilon) \exp\left[-\Upsilon t^{\xi}\right] d\Upsilon$$
$$g_{2}(t) = \underbrace{\frac{a'}{(1+\beta')}}_{a} + \underbrace{\frac{1}{(1+\beta')}}_{\beta} \int_{\Upsilon \operatorname{Min}}^{\Upsilon \operatorname{Max}} \Psi(\Upsilon) \exp\left[-\Upsilon t^{\xi}\right] d\Upsilon$$
$$(1+\beta')g_{2}(t) = a' + \int_{\Upsilon \operatorname{Min}}^{\Upsilon \operatorname{Max}} \Psi(\Upsilon) \exp\left[-\Upsilon t^{\xi}\right] d\Upsilon$$
$$g_{2}(t_{j}) = a' - \beta' g_{2}(t_{j}) + \sum_{i=1}^{N} c_{i} \Psi(\Upsilon) \exp\left[-\Upsilon t^{\xi}\right]$$

$$\underbrace{\begin{bmatrix} g_2(t_1) \\ \vdots \\ g_2(t_M) \end{bmatrix}}_{\mathbf{b}} = \underbrace{\begin{bmatrix} 1 & -g_2(t_1) & c_1 e^{-\Upsilon_1 t_1^{\xi}} & \dots & c_N e^{-\Upsilon_N t_1^{\xi}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & -g_2(t_M) & c_1 e^{-\Upsilon_1 t_M^{\xi}} & \dots & c_N e^{-\Upsilon_N t_M^{\xi}} \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} a' \\ \beta' \\ \Psi(\Upsilon_1) \\ \vdots \\ \Psi(\Upsilon_N) \end{bmatrix}}_{\mathbf{x}}$$

The figure below shows an example of batch analysis. Panel (e) shows the set of $\Psi(\Upsilon)$ recovered, and panel (h) shows the relative χ^2 and background found for each q point.

Dynamics often have well-defined dependence on the length scale of the measurement. MULTIQ allows collective analysis of all the data given some predefined specified q dependence either in the form of a power law q^n or incorporation of a functional model S(q) resulting from de Gennes narrowing.

Single Distribution

The model for collective analysis gives a matrix equation as before, except that the ${\bf g_2}$ and K matrices consist of blocks. Using a global background

a and contrast β for all the measured g_2 means that the solution vector **S** has the same elements as before.

$$g_{2}(q,t) = a + \beta \int_{0}^{\infty} \Psi(\Upsilon) \exp\left[-\Upsilon q^{n} t^{\xi}\right] d\Upsilon$$

$$g_{2}(q_{k},t_{j}) = a' - \beta' g_{2}(q_{k},t_{j}) + \sum_{i=1}^{N} c_{i} \Psi(\Upsilon_{i}) e^{-\Upsilon_{i} q_{k}^{n} t_{j}^{\xi}}$$

$$\underbrace{\left[\begin{array}{c}g_{2}(q_{1},t_{1})\\\vdots\\g_{2}(q_{L},t_{N})\\\vdots\\g_{2}(q_{L},t_{N})\\\vdots\\g_{2}(q_{L},t_{M})\end{array}\right]}_{\mathbf{g}_{2}} = \underbrace{\left[\begin{array}{c}\frac{K_{1}}{K_{2}}\\\vdots\\K_{L}\end{array}\right]}_{\mathbf{g}_{2}\left(\frac{\beta'}{\Psi(\Upsilon_{1})}\right)} \left[\begin{array}{c}a'\\\beta'\\\Psi(\Upsilon_{1})\\\vdots\\\Psi(\Upsilon_{N})\\\mathbf{g}_{2}\right]}_{\mathbf{g}_{2}}$$

$$K_{k} = \begin{bmatrix}1 & -g_{2}(q_{k},t_{1}) & c_{1}e^{-\Upsilon_{1}t_{1}q_{k}^{2}} & \dots & c_{N}e^{-\Upsilon_{N}t_{1}q_{k}^{2}}\\\vdots&\vdots&\vdots&\ddots&\vdots\\1 & -g_{2}(q_{k},t_{M}) & c_{1}e^{-\Upsilon_{1}t_{M}q_{k}^{2}} & \dots & c_{N}e^{-\Upsilon_{N}t_{M}q_{k}^{2}}\end{bmatrix}$$

Use of a different background and coherence factor for each g_2 requires modification of the kernel, with a(q) and $\beta(q)$ rendered functions of q.

$$g_{2}(q,t) = a(q) + \beta(q) \int_{0}^{\infty} \Psi(\Upsilon) \exp\left[-\Upsilon q^{n} t^{\xi}\right] d\Upsilon$$
$$g_{2}(q_{k},t_{j}) = a_{k}' - \beta_{k}' g_{2}(q_{k},t_{j}) + \int_{\Upsilon_{\min}}^{\Upsilon_{\max}} \Psi(\Upsilon) \exp\left[-\Upsilon q_{k}^{n} t_{j}^{\xi}\right] d\Upsilon$$

The matrix equation has a solution vector **S** that now has blocks for **a** and β , in addition to the distribution $\Psi(\Upsilon)$. The transform matrix K has corresponding modifications, where $\delta_{i\ell}$ is Kronecker's delta function.

$$g_2(q_k, t_j) = \sum_{\ell=1}^N \delta_{i\ell} a'_k + \sum_{\ell=1}^N \underbrace{-\delta_{k\ell} g_2(q_k, t_j)}_{\mathbf{L}_{kj\ell}} \beta'_k + \sum_{i=1}^L \underbrace{c_i \exp\left[-\Upsilon_i \left(\frac{q_k}{q_o}\right)^n t_j^\xi\right]}_{\mathbf{K}_{ijk}} \Psi(\Upsilon_i)$$

The following example shows application of a q-dependent inverse Gaussian transform to a set of measured XPCS data to yield a single, global distribution. The panel (h) shows the relative $\chi^2(q)$, a(q), and $\beta(q)$.

$$g_{2}\left(q,t
ight)=a(q)+eta(q)\int_{0}^{\infty}\Psi(\Upsilon)\exp\left[-\Upsilon q^{1}t^{2}
ight]\,d\Upsilon$$

Two Distributions

Collective analysis of multiple data sets allows integration of models for different degrees of q dependency. The original implementation of CONTIN MULTIQ employed two solution grids – one q^2 -dependent and the other q-independent. For XCPS data analysis, CONTIN XPCS generalizes the model to include arbitrary values for the time exponent ξ and q-dependence for the distributions $\Psi(\Upsilon)$ and $\Psi'(\Upsilon)$.

$$g_{2}(q,t) = a(q) + \beta(q) \int_{0}^{\infty} \Psi(\Upsilon) \exp\left[-\Upsilon q^{n} t^{\xi}\right] + \Psi'(\Upsilon) \exp\left[-\Upsilon q^{n'} t^{\xi'}\right] d\Upsilon$$

As before, CONTIN places this in matrix form, where the solution vector has blocks for \mathbf{a}, β, Ψ and Ψ' .

$$g_{2}\left(q_{k},t_{j}\right) = \sum_{\ell=1}^{N} \delta_{i\ell} a_{k}^{\prime} + \sum_{\ell=1}^{N} \underbrace{-\delta_{k\ell} g_{2}\left(q_{k},t_{j}\right)}_{\mathcal{L}_{kj\ell}} \beta_{k}^{\prime} + \sum_{i=1}^{L} \underbrace{c_{i} \exp\left[-\Upsilon_{i}\left(\frac{q_{k}}{q_{o}}\right)^{n} t_{j}^{\xi}\right]}_{\mathcal{K}_{ijk}} \Psi(\Upsilon_{i}) + \sum_{i=1}^{L} \underbrace{c_{i} \exp\left[-\Upsilon_{i}\left(\frac{q_{k}}{q_{o}}\right)^{n^{\prime}} t_{j}^{\xi^{\prime}}\right]}_{\mathcal{K}_{ijk}^{\prime}} \Psi^{\prime}(\Upsilon_{i})$$

Adding a q^0 -dependent inverse Gaussian transform to the previous result serves to test the significance of the q^2 dependence.

$$g_{2}(q,t) = a(q) + \beta(q) \int_{0}^{\infty} \Psi(\Upsilon) \exp\left[-\Upsilon q^{1}t^{2}\right] + \Psi'(\Upsilon) \exp\left[-\Upsilon q^{0}t^{2}\right] d\Upsilon$$

Even with the option of using another distribution, CONTIN assigns all the intensity to the q-dependent distribution (red), and leaves the q-independent distribution flat.

Use of a model for q-dependency – S(q)

The first distribution has the option to include an external model for q-dependency, represented by S(q) from the observation of de Gennes narrowing in XPCS. Click the **S**(**q**) File button to import a file containing the desired q points and the value of S(q).

The imported S(q) file must have the format shown below, and the range of q values must be equal to or larger than the $g_2 q$ measurement range for internal generation of an interpolation function.

0.0356 0.653 0.0358 0.679 0.0360 0.711 . . 0.0569 0.927 0.0571 0.881 0.0573 0.837

The S(q) incorporates in the kernel as shown below.

$$g_{2}(q,t) = a + \beta \int_{0}^{\infty} \Psi(\Upsilon) \exp\left[\frac{-\Upsilon\left(\frac{q_{i}}{q_{o}}\right)^{n} t^{\xi}}{S\left(\frac{q_{i}}{q_{o}}\right)}\right] + \Psi'(\Upsilon) \exp\left[-\Upsilon\left(\frac{q_{i}}{q_{o}}\right)^{n'} t^{\xi'}\right] d\Upsilon$$

$$g_{2}\left(q_{k},t_{j}\right) = \sum_{\ell=1}^{N} \delta_{i\ell} a_{k}^{\prime} + \sum_{\ell=1}^{N} \underbrace{-\delta_{k\ell} g_{2}\left(q_{k},t_{j}\right)}_{\mathbf{L}_{kj\ell}} \beta_{k}^{\prime} + \sum_{i=1}^{L} \underbrace{c_{i} \exp\left[\frac{-\Upsilon_{i}}{S\left(\frac{q_{k}}{q_{o}}\right)^{n} t_{j}^{\xi}\right]}_{\mathbf{K}_{ijk}} \Psi(\Upsilon_{i}) + \sum_{i=1}^{L} \underbrace{c_{i} \exp\left[-\Upsilon_{i}\left(\frac{q_{k}}{q_{o}}\right)^{n'} t_{j}^{\xi'}\right]}_{\mathbf{K}_{ijk}} \Psi'(\Upsilon_{i})$$

Other Parameters 3.4

Weights

The option Weights controls the weighing of the input data in the inverse transformation. Usually, the most practical option weights the data by the input error, though other choices can give different results in certain cases.

Weights 🔘 None 🔘 Poisson 🔘 Constant 💿 Input 🔘 Internal

- None Unweighted analysis
- Poisson Assume variance $\propto \sqrt{g_2(q_i, t_j)}$
- Constant Assume variance $\propto g_2(q_i, t_j)$
- Input Data are weighted by $1/\sigma(q_i, t_j)$. Internal Assume variance $\propto \frac{g_2(q_i, t_j)^2 + 1}{4g_2(q_i, t_j)^2}$

Lagrange Multiplier

The selection of Lagrange multiplier Λ determines the solution, and likely represents the most critical part of inverse transformation. We find that the internal metric used by CONTIN reliably determines the most likely solution in almost all cases. In operation, CONTIN performs a broad search over the number of search points, then a more narrow search in the region where $\mathcal{P}_{\rm rej}$ crosses from zero to one. Alternatively, the user may fix the value of Λ at some value to check the automatically-chosen solution. The figure below shows the search for Λ during inverse Gaussian transformation of the test data.

3.5Result

For convenience, the distributions shown initially have Υ with the absolute q dependence divided out using the first q point measured. Checking the box **Rescale MULTIQ** puts the Υ back into units of inverse time.

Result	Rescale MULTIQ	Rescale CONTIN by q^	-2.00 ≑

In the same way, when CONTIN analysis gives a series of distributions, the checkbox **Rescale CONTIN by q**[^] will shift the Υ of each distribution by the q point of the measurement according to the q value selected in the spinbox, $\Psi(\Upsilon) \rightarrow \Psi(\Upsilon q^n)$.

3.6 Export

The form of the output created by clicking **Export** depends on weather the solution resulted from clicking **Run CONTIN Batch** or **Run MULTIQ**. For **Run CONTIN Batch**, the export consists of a single file output, while **Run MULTIQ** will give two or three.

Run CONTIN Batch	Run MULTIQ	Stop	Export	Reset	
------------------	------------	------	--------	-------	--

CONTIN Batch Export

The name of the file consists of the sample name with the file extension .XPCSCONTINbatch. The TestData.XPCSCONTINbatch file from analysis of the test data using a series if inverse transformations contains the overall parameters for the inverse transform, and a list of the CONTIN result for each q point. Each q point has a solution for the distribution $\Psi(\Upsilon)$ and a background, selected Lagrange multiplier, degrees of freedom, and standard deviation for each q point as shown below.

Input Data File Na g2s (q points Number q poin	me: TestData) ignored in this a ts : 18	malysis: []
CONTIN Batch settings Solution Points: Kohlrausch Exponen	: 150 t: 2	
Data Weights:	Input Error	
BEGIN OUTPUT OF D	ISTRIBUTIONS FOUND	FOR EACH Q POINT
<pre>>>> DISTRIBUTION # 1 Background: log Lagrange Multi; Degrees of Freedom Probability to Rej Standard deviation log(Campa)</pre>	AT q = 0.0362 0.0051 plier: -2.1555 : 7.7462 ect: 0.4664 : 0.0008	Free
-7.0	7.8e-07	8.06e-06
-6.90604003	2.24e-06	2.264e-05
-6.81208017 	4.32e-06	4.221e-05
6.81208641	0.0	0.0
6.90604624	0.0	0.0
7.00000569	0.0	0.0

Given the discrete points (Magnitude) $\Psi(\Upsilon_i)$ approximating the distribution $\Psi(\Upsilon)$ at the points log(Upsilon), $\widehat{\Upsilon} = \log_{10} \Upsilon$, and the background a for the solution at a particular q point, reintegration according to the simple rectangle rule below gives the fit to the data using any external program (Excel, Mathematica, etc.).

$$g_2(t) = 1 + a + (1 - a) \sum_i \Psi(\widehat{\Upsilon}_i) \exp\left[-\left(10^{\widehat{\Upsilon}_i}\right) t^{\xi}\right]$$

Collective analysis of all the data sets (MULTIQ) gives two or three files upon export. The first file with extension .XPCSCONTIN contains the global parameters for the inverse transform and the global distribution(s) found without rescaling. CONTIN XPCS writes file containing the rescaled distribution with the extension .XPCSCONTINgrid1, and, if the model uses a second distribution, a second rescaled distribution file .XPCSCONTINgrid2.

A typical *****.XPCSCONTIN file appears as follows.

Input Data File Name:	TestData	
g2s (q points) i	ignored in this analysis: []	
Number q points	: 18	
CONTIN MULTIQ settings		
First Distribution	a^2 O-Dependent Kohlrausch I	Fynonen

First Distribution q^2.0-Dependent Kohlrausch Exponent:2 Second Distribution q^0.0-Dependent Kohlrausch Exponent:2

Solution Points:	150
Background:	Multiple
Data Weights:	Input Error

Solution:

Lagrange Multiplier:	-3.3787
Sum of deivations:	2.2651
Degrees of freedom:	43.0035
Probability to reject:	0.4803

GLOBAL DISTRIBUTION FOUND

Gamma on the first grid is given below as Gamma / 0.036183 Gamma on the second grid is given below as Gamma / 1.0

log(Gamma)	First Grid	Error	Second Grid	Error
-7.0	0.0	0.0	0.01110797	0.05887923
-6.90604003	0.0	0.0	0.01100091	0.05836171
-6.81208017	0.0	0.0	0.0108262	0.0575145
-6.71812032	0.0	0.0	0.0105813	0.05632712
-6.62416049	0.0	0.0	0.01026441	0.05479281
-6.53020061	0.0	0.0	0.00987459	0.0529093

· · · · · ·

FITTING PARAMETERS FOR EACH q POINT

q	Background	% Contrast	Relative Deviation
0.0362	0.0037	3.7986	0.1096
0.0373	0.0043	3.8818	0.1134
0.0386	0.0043	3.9245	0.1349
0.0398	0.004	3.9633	0.1118

SEARCH FOR LAGRANGE MULTIPLIER

Lagrange Multiplier	Standard Deviation	Deg Freedom	Probability to Reject
-7.353	1.7694	45.7037	0.0
-6.9517	1.7702	46.4936	0.0
-6.5503	1.77	46.2193	0.0

The grid files contain the distributions with the units of the abscissa given by $\widehat{\Upsilon}.$

$$\widehat{\Upsilon}_i = \log_{10} \Upsilon_i q_1{}^n \tag{13}$$

Contents of the output file TestData.XPCSCONTINgrid1

log(Gamma)	Distribution	Error
-8.4415	0.0	0.0
-8.34754	0.0	0.0
-8.25358	0.0	0.0
5.37059	3e-05	0.00017
5.46455	3e-05	0.00017
5.55851	3e-05	0.00018

Reintegration of the output file for $g_2(q_k,t)$ at the $k^{\text{th}} q$ point uses $\log(\text{Upsilon}) = \hat{\Upsilon}_i$ and the Distribution $= \Psi(\hat{\Upsilon}_i)$ from the TestData.XPCSCONTINgrid file using a rectangular rule and values for background a and the scale factors β in a ratio from the TestData.XPCSCONTIN file, as shown below. Usually the parameter ν_k equals unity, but occasionally requires additional *ad hoc* multiplicative scaling of the integrated result by adjusting ν_k for each q point.

$$g_2(k,t) = a_k + \frac{\nu_k \beta_{\text{last}}}{\beta_k} \sum_i \Psi(\widehat{\Upsilon}_i) \exp\left[-\left(\frac{10^{\widehat{\Upsilon}_i}}{q_1^n}\right) \left(\frac{q_k}{q_1}\right)^n t^{\xi}\right]$$

Upon checking the **Second Distribution** checkbox, the export includes the file **TestData.XPCSCONTINgrid2** containing the second distribution. The files gives Υ in terms of reduced units

		$\widehat{\Upsilon'}_i = \log$	$\log_{10} \Upsilon_i {q_1}^{n'}$	(14)
Log(Gamma)		Distribution	Error	
-7.0		3e-05	0.00017	
-6.90604		3e-05	0.00017	
-6.81208		3e-05	0.00017	
	•			
5.81209		0.0	0.0	
6.90605		0.0	0.0	
7.00001		0.0	0.0	

Reintegration of the output file for $g_2(q_k, t)$ at the $k^{\text{th}} q$ point using two solution distributions uses $\log(\text{Upsilon}) = \hat{\Upsilon}_i$ and the Distribution $= \Psi(\hat{\Upsilon}_i)$ from the .XPCSCONTINgrid1 file and $\log(\text{Upsilon}) = \hat{\Upsilon}_i$ and the Distribution $= \Psi'(\hat{\Upsilon}_i)$ from the .XPCSCONTINgrid2 file. Again, the background *a* and the contrasts β in a ratio come from the .XPCSCONTIN file.

$$g_2(k,t) = a_k + \frac{\nu_k \beta_{\text{last}}}{\beta_k} \left[\sum_i \Psi(\widehat{\Upsilon}_i) \exp\left[-\left(\frac{10^{\widehat{\Upsilon}_i}}{q_1^n}\right) \left(\frac{q_k}{q_1}\right)^n t^{\xi} \right] + \sum_i \Psi'(\widehat{\Upsilon}_i) \exp\left[-\left(\frac{10^{\Upsilon_i}}{q_1^{n'}}\right) \left(\frac{q_k}{q_1}\right)^{n'} t^{\xi'} \right] \right]$$