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Supporting Information 
Born approximation simulation 
Solutions to Fourier transforms 
The form factor for a trapezoid with constant scattering length density 𝜌𝜌𝑇𝑇 (equations 4-6 in the main 
text) is: 

𝜌𝜌𝑇𝑇 � � 𝑒𝑒−𝑖𝑖𝑞𝑞𝑥𝑥𝑥𝑥𝑒𝑒−𝑖𝑖𝑞𝑞𝑧𝑧𝑧𝑧 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑥𝑥𝑏𝑏(𝑧𝑧)

𝑥𝑥𝑎𝑎(𝑧𝑧)

𝑧𝑧2

𝑧𝑧1

 

= 𝜌𝜌𝑇𝑇
𝑧𝑧1 − 𝑧𝑧2
𝑞𝑞𝑥𝑥

𝑒𝑒−𝑖𝑖𝑞𝑞𝑧𝑧(𝑧𝑧1+𝑧𝑧2) �
𝑒𝑒𝑖𝑖(𝑞𝑞𝑧𝑧𝑧𝑧1−𝑞𝑞𝑥𝑥𝑥𝑥2) − 𝑒𝑒𝑖𝑖(𝑞𝑞𝑧𝑧𝑧𝑧2−𝑞𝑞𝑥𝑥𝑥𝑥1)

𝑞𝑞𝑥𝑥(𝑥𝑥1 − 𝑥𝑥2) + 𝑞𝑞𝑧𝑧(𝑧𝑧1 − 𝑧𝑧2)
+
𝑒𝑒𝑖𝑖(𝑞𝑞𝑧𝑧𝑧𝑧1−𝑞𝑞𝑥𝑥𝑥𝑥3) − 𝑒𝑒𝑖𝑖(𝑞𝑞𝑧𝑧𝑧𝑧2−𝑞𝑞𝑥𝑥𝑥𝑥4)

𝑞𝑞𝑥𝑥(𝑥𝑥3 − 𝑥𝑥4) + 𝑞𝑞𝑧𝑧(𝑧𝑧2 − 𝑧𝑧1) �
. (SI1) 

The interface component of the form factor for a trapezoid with orientation strength varying with 
horizontal distance from the interface (equations 14-16 in the main text) is: 

� � �𝑒𝑒−𝑥𝑥𝑙𝑙(𝑥𝑥,𝑧𝑧)/𝑙𝑙𝑝𝑝 + 𝑒𝑒−𝑥𝑥𝑟𝑟(𝑥𝑥,𝑧𝑧)/𝑙𝑙𝑝𝑝�𝑒𝑒−𝑖𝑖𝑞𝑞𝑥𝑥𝑥𝑥𝑒𝑒−𝑖𝑖𝑞𝑞𝑧𝑧𝑧𝑧 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑

𝑥𝑥𝑏𝑏(𝑧𝑧)

𝑥𝑥𝑎𝑎(𝑧𝑧)

𝑧𝑧2

𝑧𝑧1

 

= 𝑙𝑙𝑝𝑝(𝑧𝑧1 − 𝑧𝑧2)�
𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥4+𝑞𝑞𝑧𝑧𝑧𝑧1)+(𝑥𝑥1−𝑥𝑥4)/𝑙𝑙𝑝𝑝 − 𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥3+𝑞𝑞𝑧𝑧𝑧𝑧2)+(𝑥𝑥2−𝑥𝑥3)/𝑙𝑙𝑝𝑝

�𝑙𝑙𝑝𝑝𝑞𝑞𝑥𝑥 − 𝑖𝑖�(𝑞𝑞𝑥𝑥(𝑥𝑥4 − 𝑥𝑥3) + 𝑞𝑞𝑧𝑧(𝑧𝑧1 − 𝑧𝑧2) + 𝑖𝑖(𝑥𝑥1 − 𝑥𝑥2 + 𝑥𝑥3 − 𝑥𝑥4)/𝑙𝑙𝑝𝑝)

−
𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥1+𝑞𝑞𝑧𝑧𝑧𝑧1)+(𝑥𝑥1−𝑥𝑥4)/𝑙𝑙𝑝𝑝 − 𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥2+𝑞𝑞𝑧𝑧𝑧𝑧2)+(𝑥𝑥2−𝑥𝑥3)/𝑙𝑙𝑝𝑝 

�𝑙𝑙𝑝𝑝𝑞𝑞𝑥𝑥 + 𝑖𝑖�(𝑞𝑞𝑥𝑥(𝑥𝑥1 − 𝑥𝑥2) + 𝑞𝑞𝑧𝑧(𝑧𝑧1 − 𝑧𝑧2) + 𝑖𝑖(𝑥𝑥1 − 𝑥𝑥2 + 𝑥𝑥3 − 𝑥𝑥4)/𝑙𝑙𝑝𝑝)

−
𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥1+𝑞𝑞𝑧𝑧𝑧𝑧1) − 𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥2+𝑞𝑞𝑧𝑧𝑧𝑧2)

�𝑙𝑙𝑝𝑝𝑞𝑞𝑥𝑥 − 𝑖𝑖�(𝑞𝑞𝑥𝑥(𝑥𝑥1 − 𝑥𝑥2) + 𝑞𝑞𝑧𝑧(𝑧𝑧1 − 𝑧𝑧2))

−
𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥4+𝑞𝑞𝑧𝑧𝑧𝑧1) − 𝑒𝑒−𝑖𝑖(𝑞𝑞𝑥𝑥𝑥𝑥3+𝑞𝑞𝑧𝑧𝑧𝑧2)

�𝑙𝑙𝑝𝑝𝑞𝑞𝑥𝑥 + 𝑖𝑖�(𝑞𝑞𝑥𝑥(𝑥𝑥4 − 𝑥𝑥3) + 𝑞𝑞𝑧𝑧(𝑧𝑧1 − 𝑧𝑧2))
� .                                        (SI2) 

Derivation of scattering contrast 
We derive an expression for the scattering length density of each trapezoid, 𝜌𝜌𝑇𝑇, that takes into account 
the molecular orientation-dependent interaction between the resonant X-rays and the transition dipole 



moments of the antibonding orbitals. We start with the normalized electric field of the incident X-rays, 
𝐸𝐸�in, which induces a dipole moment  

𝑝𝑝 = 𝜶𝜶 ⋅ 𝐸𝐸�in, (SI3) 

where 𝜶𝜶 is the second-rank complex polarizability tensor. This dipole moment then radiates an electric 
field 𝐸𝐸�⃑ scat in the radiation zone (Jackson, 1999) (eqn. 9.19), 

𝐸𝐸�⃑ scat = �
𝜇𝜇0
𝜖𝜖0
�
1 2⁄ 𝑐𝑐𝑘𝑘2

4𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟 �(𝑛𝑛� × 𝑝𝑝) × 𝑛𝑛��, (SI4) 

where 𝑛𝑛� is a unit vector in the direction of the scattered Poynting vector, 𝑘𝑘 is the wave number, 𝑟𝑟 is the 
distance between the scatterer and the observer, 𝑐𝑐 is the speed of light, 𝜇𝜇0 is the vacuum permeability 
and 𝜖𝜖0 is the vacuum permittivity. 

Using the identity �𝑎⃑𝑎 × 𝑏𝑏�⃑ � × 𝑐𝑐 = (𝑐𝑐 ⋅ 𝑎⃑𝑎)𝑏𝑏�⃑ − �𝑐𝑐 ⋅ 𝑏𝑏�⃑ �𝑎⃑𝑎, equation (SI4) can be rewritten as: 

𝐸𝐸�⃑ scat = �
𝜇𝜇0
𝜖𝜖0
�
1 2⁄ 𝑐𝑐𝑘𝑘2

4𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟
[𝑝𝑝 − (𝑛𝑛� ⋅ 𝑝𝑝)𝑛𝑛�]. (SI5) 

We express 𝑝𝑝 in terms of the direction of propagation 𝑛𝑛�, a unit vector in the direction of 𝐸𝐸�⃑ scat, 𝐸𝐸�scat, and 
an additional orthogonal basis vector 𝑚𝑚� = 𝑛𝑛� × 𝐸𝐸�scat: 

𝑝𝑝 = (𝑛𝑛� ⋅ 𝑝𝑝)𝑛𝑛� + �𝐸𝐸�scat ⋅ 𝑝𝑝�𝐸𝐸�scat + (𝑚𝑚� ⋅ 𝑝𝑝)𝑚𝑚� . (SI6) 

Thus, we have 

𝐸𝐸�⃑ scat = �
𝜇𝜇0
𝜖𝜖0
�
1 2⁄ 𝑐𝑐𝑘𝑘2

4𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟 ��𝐸𝐸�scat ⋅ 𝑝𝑝�𝐸𝐸�scat + (𝑚𝑚� ⋅ 𝑝𝑝)𝑚𝑚��. (SI7) 

Placing equation (SI3) into the above: 

𝐸𝐸�⃑ scat = �
𝜇𝜇0
𝜖𝜖0
�
1 2⁄ 𝑐𝑐𝑘𝑘2

4𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟 ��𝐸𝐸�scat ⋅ 𝜶𝜶 ⋅ 𝐸𝐸�in�𝐸𝐸�scat + �𝑚𝑚� ⋅ 𝜶𝜶 ⋅ 𝐸𝐸�in�𝑚𝑚�� (SI8) 

Since 𝐸𝐸�scat was defined to be in the direction of 𝐸𝐸�⃑ scat, we can drop the second term in the expression 
above and derive our final expression for the scattering length density 𝜌𝜌𝑇𝑇: 

𝜌𝜌𝑇𝑇 ∝ 𝐸𝐸�scat ⋅ 𝜶𝜶 ⋅ 𝐸𝐸�in (SI9) 

Derivation of diffraction efficiency 
We assume that the incident electric field is given by 

𝐸𝐸�⃗ in(𝑟𝑟) = 𝐸𝐸�⃗ in exp�𝑖𝑖𝑘𝑘0,𝑧𝑧𝑧𝑧� exp�𝑖𝑖𝑘𝑘0,𝑥𝑥𝑥𝑥� , (SI10) 

where 𝑘𝑘0,𝑥𝑥 = 𝑘𝑘 sin𝜃𝜃0,  𝑘𝑘0,𝑧𝑧 = 𝑘𝑘 cos𝜃𝜃0, 𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄ , and 𝜃𝜃0 is the incident angle. The power per unit area 
associated with this wave is 

𝑃𝑃(0) =
cos𝜃𝜃0

2
𝑍𝑍0�𝐸𝐸�⃗ in�

2
, (SI11) 



where 𝑍𝑍0 is the impedance of free space. At the location of the grating, the field is attenuated due to 
absorption in the substrate and is reduced to 

𝐸𝐸�⃗ (0)(𝑟𝑟) = 𝐸𝐸�⃗ in exp�𝑖𝑖𝑘𝑘0,𝑧𝑧𝑧𝑧� exp�𝑖𝑖𝑘𝑘0,𝑥𝑥𝑥𝑥� exp �−
𝜇𝜇𝜇𝜇

2 cos𝜃𝜃0
� , (SI12) 

where 𝜇𝜇 = (4𝜋𝜋/𝜆𝜆) Im 𝑛𝑛𝑠𝑠, and 𝜏𝜏 is the thickness of the substrate.  The scattered (diffracted) field above 
the structure is a Floquet series in 𝑥𝑥, 

𝐸𝐸�⃗ (𝑟𝑟) = �𝐸𝐸�⃗𝑗𝑗 exp�𝑖𝑖𝑘𝑘𝑗𝑗,𝑧𝑧𝑧𝑧� exp (𝑖𝑖𝑘𝑘𝑗𝑗,𝑥𝑥𝑥𝑥)
𝑗𝑗

, (SI13) 

where 𝑑𝑑 is the period, 𝑘𝑘𝑗𝑗,𝑥𝑥 = 𝑗𝑗𝑗𝑗 + 𝑘𝑘0,𝑥𝑥 = 𝑘𝑘 sin𝜃𝜃𝑗𝑗 ,𝑘𝑘𝑗𝑗,𝑧𝑧 = �𝑘𝑘2 − 𝑘𝑘𝑗𝑗,𝑥𝑥
2 �1 2⁄ = 𝑘𝑘 cos𝜃𝜃𝑗𝑗, and  

𝐸𝐸�⃗𝑗𝑗 =
1
𝑑𝑑
� 𝐸𝐸�⃗ (𝑟𝑟) exp�−𝑖𝑖𝑘𝑘𝑗𝑗,𝑥𝑥𝑥𝑥� 𝑑𝑑𝑑𝑑
𝑑𝑑

0
. (SI14) 

The power per unit area associated with 𝐸𝐸�⃗𝑗𝑗  is  

𝑃𝑃𝑗𝑗 =
cos𝜃𝜃𝑗𝑗

2
𝑍𝑍0�𝐸𝐸�⃗𝑗𝑗�

2
, (SI15) 

Thus, the diffraction efficiency is  

𝑃𝑃𝑗𝑗
𝑃𝑃(0) =

cos𝜃𝜃𝑗𝑗
cos𝜃𝜃0

�𝐸𝐸�⃗𝑗𝑗�
2

�𝐸𝐸�⃗ in�
2 . (SI16) 

In the Born approximation, we solve the wave equation 

∇ × �∇ × 𝐸𝐸�⃗ (𝑟𝑟)� − 𝑘𝑘2𝐸𝐸�⃗ (𝑟𝑟) = −𝑘𝑘2Δ𝜖𝜖(𝑟𝑟)𝐸𝐸�⃗ (0)(𝑟𝑟), (SI17) 

where by Δ𝜖𝜖(𝑟𝑟) = 𝜖𝜖(𝑟𝑟) − 1 is the modulation in the dielectric tensor 𝜖𝜖(𝑟𝑟). When Δ𝜖𝜖(𝑟𝑟) is periodic in 𝑥𝑥, 
with period 𝑑𝑑, the solution to the wave equation is 

𝐸𝐸�⃗𝑗𝑗 =
1
𝑑𝑑
� 𝐺𝐺𝑗𝑗(𝑥𝑥′, 𝑧𝑧′)Δ𝜖𝜖(𝑥𝑥′, 𝑧𝑧′)𝐸𝐸�⃗ (0)(𝑥𝑥′, 𝑧𝑧′)𝑑𝑑𝑑𝑑′𝑑𝑑𝑑𝑑′

 𝑑𝑑

0
, (SI18) 

where the dyadic Green function is given by 

𝐺𝐺𝑗𝑗(𝑥𝑥′, 𝑧𝑧′) =
𝑖𝑖𝑘𝑘2

2𝑘𝑘𝑗𝑗,𝑧𝑧
exp�−𝑖𝑖 𝑘𝑘𝑗𝑗,𝑥𝑥𝑥𝑥′ − 𝑖𝑖𝑖𝑖𝑗𝑗,𝑧𝑧𝑧𝑧′� �𝑠̂𝑠𝑗𝑗𝑠̂𝑠𝑗𝑗 + 𝑝̂𝑝𝑗𝑗𝑝̂𝑝𝑗𝑗�, (SI19) 

and the outgoing polarization basis vectors are 

𝑝̂𝑝𝑗𝑗 = −(𝑘𝑘𝑗𝑗,𝑧𝑧/𝑘𝑘)𝑥𝑥� + (𝑘𝑘𝑗𝑗,𝑥𝑥/𝑘𝑘)𝑧̂𝑧, (SI20) 

𝑠̂𝑠𝑗𝑗 = 𝑦𝑦�. (SI21) 

Thus, the outgoing wave in the 𝑗𝑗th diffraction order is  



𝐸𝐸�⃗𝑗𝑗 = −
𝑖𝑖𝑘𝑘2

2𝑑𝑑𝑘𝑘𝑧𝑧
exp �−

𝛼𝛼𝛼𝛼
2 cos𝜃𝜃0

�� (𝑠̂𝑠𝑠̂𝑠 + 𝑝̂𝑝𝑝̂𝑝) ⋅ Δ𝜖𝜖(𝑥𝑥′, 𝑧𝑧′) ⋅ 𝐸𝐸�⃗ in e−𝑖𝑖�𝑘𝑘𝑥𝑥−𝑘𝑘0,𝑥𝑥�𝑥𝑥−𝑖𝑖�𝑘𝑘𝑧𝑧−𝑘𝑘0,𝑧𝑧�𝑧𝑧𝑑𝑑𝑥𝑥′𝑑𝑑𝑧𝑧′
 𝑑𝑑

0
. (SI22) 

Note that 𝑠̂𝑠𝑠̂𝑠 + 𝑝̂𝑝𝑝̂𝑝 is simply the projection operator onto the plane perpendicular to the direction of 
outgoing propagation. If the measurement is polarization sensitive and measures a state along a unit 
vector 𝐸𝐸�out [and note that 𝐸𝐸�out ⋅ (𝑠̂𝑠𝑠̂𝑠 + 𝑝̂𝑝𝑝̂𝑝) = 𝐸𝐸�out], the efficiency for the 𝑗𝑗-th diffraction order is given 
by  

𝑃𝑃𝑗𝑗
𝑃𝑃(0) =

𝑘𝑘2

4𝑑𝑑2 cos𝜃𝜃 cos𝜃𝜃0
exp �−

𝜇𝜇𝜇𝜇
cos𝜃𝜃0

�𝑆𝑆 (SI23) 

where  

𝑆𝑆 = �� 𝐸𝐸�out ⋅ Δ𝜖𝜖(𝑥𝑥′, 𝑧𝑧′) ⋅ 𝐸𝐸�in𝑒𝑒−𝑖𝑖�𝑘𝑘𝑗𝑗,𝑥𝑥−𝑘𝑘0,𝑥𝑥�𝑥𝑥−𝑖𝑖�𝑘𝑘𝑗𝑗,𝑧𝑧−𝑘𝑘0,𝑧𝑧�𝑧𝑧𝑑𝑑𝑥𝑥′𝑑𝑑𝑧𝑧′
 𝑑𝑑

0
�
2

(SI24) 

and 𝐸𝐸�in is a unit vector in the direction of 𝐸𝐸�⃗ in. 

Comparison of Born approximation and RCW 
The following two figures compare the Born approximation and RCW simulations at the P and S 
polarizations for the same optical constants as Figure 2 of the main text, but with 𝜃𝜃in as the x-axis 
instead of 𝑞𝑞𝑧𝑧. It can be seen that the two simulations match closely at both polarizations, deviating more 
at intensity minima. 

 

Figure SI1: Comparison of the Born approximation and RCW CDSAXS simulations for a stack of 3 trapezoids, P polarization. Each 
line (vertically offset for display) is for a different diffraction order from 1-15 and −50° ≤ 𝜃𝜃𝑖𝑖𝑖𝑖 ≤ 50°. Lines are from Born 
approximation and points are from RCW. 



 

Figure SI2: Comparison of the Born approximation and RCW CDSAXS simulations for a stack of 3 trapezoids, S polarization. Each 
line (vertically offset for display) is for a different diffraction order from 1-15 and −50° ≤ 𝜃𝜃𝑖𝑖𝑖𝑖 ≤ 50°. Lines are from Born 
approximation and points are from RCW. 

Fitting simulated data for different sample models 
The following target optical parameters were used for the sample models discussed in the main text: 

Name 𝒇𝒇𝒙𝒙𝒙𝒙 𝒇𝒇𝒚𝒚𝒚𝒚 𝒇𝒇𝒙𝒙𝒙𝒙 𝒇𝒇𝒚𝒚𝒚𝒚 𝒇𝒇𝒙𝒙𝒙𝒙 𝒇𝒇𝒚𝒚𝒚𝒚 𝒍𝒍𝒑𝒑 (Å) 

A 0.1 0.1 - - - - - 
B 0.8 0.1 0.5 0.1 0.1 0.1 - 
C* 0.1 0.1 - - - - 20 
D* 0.1 0.1 - - - - 20 
E 0.1 0.1 - - - - - 
F 0.1 0.1 - - - - - 
G 0.1 0.1 - - - - - 
H 0.8 0.1 0.5 0.1 0.1 0.1 - 
I* 0.1 0.1 - - - - 20 
Table SI1: Target orientation factors and persistence lengths for each sample model. Trapezoid 1 refers to the bottom trapezoid, 
2 to the middle, and 3 to the top trapezoid. “-“ Refers to all trapezoids being constrained to have the same orientation factors. 
*Refers to interface orientation factors. 

The following table lists the goodness of fit for the various sample models. Ωtarget represents how well 
the target parameters fit the target scattering with Poisson noise, and Ωfit represents how well the best 
fit parameters of each run fit the target scattering with Poisson noise. Ωtarget and Ωfit are similar to each 
other for most of the sample models, except for models D and I (orientation), where the target and fit 
models are different and therefore Ωfit is significantly worse than Ωtarget. For models E-G where the 
target and fit models are different, fitting additional data in model F increases Ωfit slightly but increases 



the standard deviation of Ωfit by a large amount. Both Ωtarget and Ωfit become worse with increased 
amounts of Poisson noise in model B. 

Name 𝜴𝜴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 𝒎𝒎𝒎𝒎𝒎𝒎(𝜴𝜴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕) 𝜴𝜴𝒇𝒇𝒇𝒇𝒇𝒇 𝒎𝒎𝒎𝒎𝒎𝒎(𝜴𝜴𝒇𝒇𝒇𝒇𝒇𝒇) 

A 0.0323 ± 0.0019 0.0287 0.0320 ± 0.0021 0.0285 
B (0.01) 0.0089 ± 0.0003 0.0080 0.0087 ± 0.0003 0.0079 
B (0.1) 0.0285 ± 0.0010 0.0260 0.0280 ± 0.0010 0.0255 
B (1) 0.0964 ± 0.0045 0.0893 0.0957 ± 0.0043 0.0881 
C 0.0304 ± 0.0010 0.0283 0.0298 ± 0.0010 0.0277 
D 0.0307 ± 0.0011 0.0282 0.0405 ± 0.0015 0.0370 
E 0.0298 ± 0.0012 0.0272 0.0311 ± 0.0013 0.0285 
F 0.0248 ± 0.0006 0.0238 0.0357 ± 0.0108 0.0289 
G 0.0298 ± 0.0006 0.0287 0.0314 ± 0.0006 0.0300 
H, I (morphology) 0.0207 ± 0.0010 0.0183 0.0204 ± 0.0010 0.0182 
H (orientation) 0.0300 ± 0.0008 0.0284 0.0299 ± 0.0008 0.0282 
I (orientation) 0.0308 ± 0.0009 0.0286 0.0505 ± 0.0011 0.0477 
Table SI2: Goodness of fit statistics for 60 CMAES fitting runs (mean ± 1 standard deviation). Notable values are in red. 

  



The following figure shows the correlation coefficients for the models shown in Figure 4 of the main 
text. For models A and C in which all trapezoids have the same orientation in the bulk, the shape 
parameters are highly correlated, especially the heights of adjacent trapezoids which are negatively 
correlated. For model B, in which all trapezoids have different orientation, the shape parameters are 
much less correlated, while the orientation parameters are correlated due to the constraint between 
them. Finally, for model D with different target and fit models, correlations are weaker overall due to 
the large variance in best fit parameters between runs. 

 

Figure SI3: Spearman’s correlation coefficient for best fit parameters of each run from 60 independent CMAES fitting runs each 
of models A-D. 

  



The following figure shows the correlation coefficients for all the models in the main text calculated 
from the MCMC chains instead of the CMAES runs, thus representing the local fitness landscape instead 
of the global fitness landscape. As stated in the main text, the parameters are much less correlated in 
the local fitness landscape than in the global fitness landscape. This suggests that the fitness landscape 
contains multiple correlated minimum valleys surrounded by slopes where the parameters are not as 
correlated. 

 

Figure SI4: Spearman’s correlation coefficient for several target models, each with 30 MCMC chains starting at the best CMAES 
fit with a length of 100000 steps, resampled every 25 steps. 

Several additional samples were run which are not mentioned in the main text: 

Name Asymmetric Target model Fit model Poisson seed Energies (eV) Polarizations 

SI1 No Optical constants Same as target Same 284.2 P 

SI2 No Orientation factors Same as target Same 284.2 P 

SI3 Yes Orientation factors Same as target Same 284.2 P 

SI4 Yes Orientation factors Same as target Different 270, 284.2 P, S 

SI5 Yes Orientation factors Same as target Different 284.2 (x4) P (x4) 

Table SI3: List of additional sample models. Each sample model is composed of a target sample model, which is run once with 
the target parameters to generate the target scattering, and a fit sample model, which is run many times with iterated 
parameters to fit the target scattering. 



For models SI1-SI3 the random seed of the Poisson noise is the same for each fitting run. This simulates 
the effect of fitting the same data multiple times and shows the variation as a result of the fitting 
algorithm as opposed to experimental noise. Model SI1 directly varies 𝛽𝛽 and 𝛿𝛿 instead of the orientation 
factors as in model SI2. This tends to result in larger variations in the best fit parameters and less unique 
fits. The optical parameters in model SI1 are also much more correlated than in models using orientation 
factors, such as SI2. 𝐼𝐼0 was not varied for model SI1 because it is effectively the same as multiplying all 
the optical constants by a constant. Model SI2 is similar to model A and model SI3 is similar to model B, 
but with the same seed for each fitting run. The errors between the best fit and target parameters are 
centered about a non-zero value depending on the seed, and have much less variance than when the 
random seed of the Poisson noise is different for each fitting run. 

 

Figure SI5: Results from 60 independent CMAES fitting runs each of models SI1-SI3 where the random seed for the Poisson noise 
is the same for each fitting run. From left to right: the target scattering (vertically offset for display) with Poisson noise (dots) 
and best fit (lines), boxplots for percent error between best fit parameters and target parameters of each run, and Spearman’s 
correlation coefficient for best fit parameters of each run. 

Models B, SI4, and SI5 are similar to models E, F, and G respectively in the main text, except that the 
target and fit models are the same in the former set and different in the latter set. The variation in best 
fit parameters significantly decreases when going from model B to both SI4 and SI5, as more data is 
simultaneously fitted. SI4 and SI5 have about the same variation in best fit parameters even though SI4 
has more information due to fitting two energies and two polarizations, while SI5 has four repeated 
simulated measurements with different Poisson noise. This contrasts with models F and G where there 
is a large difference between repeated simulated measurements and measurements with more unique 
information. 



 

Figure SI6: Results from 60 independent CMAES fitting runs each of models SI4-SI5 with either different energies/polarizations or 
duplicate energies/polarization datasets with different noise. From left to right: the target scattering (vertically offset for 
display) with Poisson noise (dots) and best fit (lines), boxplots for percent error between best fit parameters and target 
parameters of each run, and Spearman’s correlation coefficient for best fit parameters of each run. 
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