
J. Appl. Cryst. (2017). 50,  doi:10.1107/S1600576717011438    Supporting information 

Volume 50 (2017) 

Supporting information for article: 

BioXTAS RAW: improvements to a free open-source program for 
small-angle X-ray scattering data reduction and analysis  

Jesse Bennett Hopkins, Richard E. Gillilan and Soren Skou 

http://dx.doi.org/10.1107/S1600576717011438
http://dx.doi.org/10.1107/S1600576717011438
http://journals.iucr.org/j


Journal of Applied Crystallography   computer programs 

1 

 

Supporting Information 

S1. Validation of molecular weight methods 

S1.1. Adjusted Porod volume method 

In order to validate our implementation of the adjusted Porod volume method of (Fischer et al., 2010), 

we compared the molecular weight calculation from the SAXS MoW2 calculator 

(http://saxs.ifsc.usp.br/) with the results from RAW for several different proteins and q ranges. The 

protein scattering profiles were taken from the SASBDB (https://www.sasbdb.org/) (Valentini et al., 

2015) and BIOSIS (http://www.bioisis.net/). These proteins were chosen to have a large total q range, 

a wide range of sizes, and so that some of the scattering profiles had imperfect Guinier regions (either 

due to aggregation, repulsion, or bad subtraction). The results are shown in Table S1, and show that 

within the q-ranges for correction given in the original paper, results from the two programs agree 

within 3% in all cases, and on average across all proteins and q ranges tested the results from the two 

programs agree to better than 0.01%. The largest discrepancy is seen for a protein that has obvious 

aggregation at low q (SASDA59), and so may result from differences in how the Guinier 

extrapolation is being done in the two programs. 

S1.2. Volume of correlation method 

In order to validate our implementation of the volume of correlation method of (Rambo & Tainer, 

2013) we compared the volume of correlation molecular weight results from ScÅtter (version 3.0j, 

which was created by the original authors of the method) and RAW. We tested the same set of 

proteins used to test the Adjusted Porod volume method in Section S1.1. The results are shown in 

Table S2. ScÅtter does not report a MW for a maximum q value of 0.2 Å-1, so only two of the 

maximum q values reported in Table S1 are given.  

For a maximum q value 0.3 Å-1 the two implementations agree essentially identical, with an average 

discrepancy of 0.005% and a maximum discrepancy of 0.04%. There is significant disagreement for 

the maximum q value of 0.4, as, based on empirical testing, ScÅtter seems to only integrate the 

volume of correlation to a maximum of q~0.32 Å-1 regardless of scattering profile used. The reason 

for this truncation is not known. RAW integrates to the maximum q value of the provided profile (in 

this test case 0.4 Å-1), hence the difference.  

S2. Further remarks on evolving factor analysis 

S2.1. Mathematics of EFA 

Evolving Factor Analysis is well described in (Maeder, 1987; Maeder & Neuhold, 2007; Meisburger 

et al., 2016). Because it is a new technique for the SAXS field we describe it below, in the notation 

http://saxs.ifsc.usp.br/
https://www.sasbdb.org/
http://www.bioisis.net/
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style of (Meisburger et al., 2016). The three methods described in the main text are the iterative, 

hybrid, and explicit methods. These refer to three different ways of rotating the SVD basis vectors 

into the original basis (scattering profiles vs. elution volume). We provide an overview of the method 

first, and then the details of each rotation method. 

S2.1.1. Overview of EFA 

EFA starts with a set of SEC-SAXS scattering profiles of total number m all belonging to an elution 

series, with intensity  and associated experimental errors  where the subscript indicates 

the j-th profile in the elution series. Profiles are assumed to be loaded sequentially by elution volume, 

with the j=1 profile corresponding to the earliest measured elution volume. Intensity and error 

matrices  and  are prepared where the column vectors are  and  respectively, such 

that  and . Finally, an error weighted scattering profile matrix, , is 

prepared,  

  , (1) 

such that each q-bin contributes variance of ~1. 

Singular value decomposition (SVD) of  is then carried out as 

  . (2) 

Once the SVD is carried out, users graphically identify the number of significant singular values in 

their data set, . Forward and backward EFA are then done, to determine where the elution peaks 

begin/end. Forward EFA consists of SVD repeatedly carried out on a portion of the  matrix, , 

where  is defined as the first l columns of . Letting l vary from 1 to the m, the values of the first 

 singular values are plotted vs. l. This plot is the Forward Evolving Factor plot. Backward EFA 

is the same as forward EFA, but instead of taking the first l columns of , the last l columns of  

are used. This is plotted on the Backward Evolving Factor plot. Users then select the points of the 

forward/backward evolving factors where each factor (singular value vs. profile number) starts to rise 

above the baseline. These points are represented by the vectors  and , which are sorted in 

ascending order, for the forward and backward points respectively. 

It is assumed that components elute serially, so the first point in  and  represents the start and 

end respectively of the first component in the data. This assumption is used by all of the rotation 

methods described below to rotate from the SVD basis back to the original basis, which results in the 

following outputs: , a matrix containing the concentration profiles for each pure component,  
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the scattering profiles of each pure component, and  the errors for each pure component. Here, 

the subscript indicates the k-th pure component, where k is between 1 and . 

S2.1.2. Iterative rotation method 

The iterative rotation method is that used by (Meisburger et al., 2016). This description generally 

follows the program laid out in their Figure S11. The first step is initialization. We start by making an 

initial concentration matrix  for the pure components. Note that  has  number of columns. If 

no previous successful rotation of the basis vectors has been achieved, then we set  equal to the first 

 columns of , . Otherwise, we set  equal to the concentration matrix of the successful 

rotation (for example, this happens if the user has achieved a successful rotation, then changes the 

range of one or more of the components by changing the selected inflection point in  and/or 

). The use of the previous successful rotation as an initial value is purely to speed up convergence of 

the iterative algorithm. 

Next, we create the indicator matrix , where each column represents the range of a component in 

the data, i.e. is 1 where the component exists in the data set and is zero otherwise: 

  . (3) 

We define that the algorithm has converged when the absolute change in  is less than , a 

tolerance threshold selected by the user. The user also selects the maximum number of iterations at 

which the algorithm will terminate if convergence is not achieved. In RAW, reasonable default values 

of these parameters are provided. 

Once the initialization is done, the algorithm enters the iterative stage. First, we compute the basis set 

from the Moore-Penrose pseudoinverse of the masked concentration matrix 

  , (4) 

where  is the Moore-Penrose inverse of  and  is the Hadamard Product  

(an element-wise product). Next, we calculate the new concentration matrix as the projection of the 

data onto the basis set 

  . (5) 

RAW allows the users to constrain one or more components to have positive concentration. If that 

constraint is used, it is applied to  at this stage, setting all negative values in each constrained 

component to zero, 
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  , (6) 

where := is the assignment operator. The columns of  are then normalized by their area 

  . (7) 

The final step in the iteration is to test convergence. We calculate the absolute change in  as  

  , (8) 

and if  the iterative algorithm has converged. If the algorithm has not converged, and the 

current iteration is less than the maximum number of iterations, we repeat the iterative step, first 

assigning , otherwise we exit the algorithm without a solution. 

In the case where the algorithm has converged, we assign  then calculate the scattering 

profiles and errors as follows. Note that no matter which approach is used to find  we calculate the 

profiles and errors the same way. First, we calculate a set of coefficients , 

  , (9) 

from which the scattering profiles of the pure components can be computed as 

  , (10) 

where  is the matrix of original intensities defined in S2.1.1. The uncertainties are then calculated 

as 

  , (11) 

where  is the matrix of original uncertainties defined in S2.1.1. 

S2.1.3. Explicit rotation method 

An alternative approach is to explicitly compute the concentration matrix. We start by defining a 

reduced matrix of scattering profiles  as 

  , (12) 

which is the matrix constructed from the first  singular values and vectors. We then assume that our 

matrix  can be represented as the product of a matrix with the pure component profiles, , times 

the concentration matrix, 

  . (13) 
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Equating these, and left multiplying by  gives 

  , (14) 

where we have defined the transformation matrix . This matrix is unknown, but we can solve for it 

using the information obtained from the evolving factor plots,  and . 

Consider the i-th row of , , 

  . (15) 

Recall that we have constrained  to be zero outside of the range defined by  and . Taking 

only the portion of the vectors and matrix outside of that range, we can write 

  , (16) 

where  is the matrix made by removing the columns j of where . This equation 

has a trivial solution, , but as  is not full rank it also has a non-trivial solution. Because  

is not full rank, we are free to pick a component as an arbitrary value, in this case we make the first 

component of  equal 1. This gives 

  . (17) 

Note that the  limit of the slices is the full size of the matrix, but is included for clarity. This can be 

solved for , 

  . (18) 

In combination with the picked first value of 1, this gives the full . 

The complete transformation matrix  can be found row by row in this fashion, and then the 

concentration matrix  found via equation (14). Note that using this approach the concentration 

matrix may be negative, in which case multiply by -1. The concentration matrix here is actually the 

transpose of that defined in Section S2.1.2 Once the concentration matrix is found, the transpose is 

taken and then the scattering profiles are calculated as in the last part of Section S2.1.2 (equations (9) 

to (11)). 

Note that in the trivial case of one component, this approach does not work. However, in that case no 

deconvolution is necessary. 

The strength of this method is that it is fast, and it (almost) always returns a result. However, in our 

experience the results are not always as good as the iterative method, possibly because we cannot 

impose the extra constraint of positive concentration. 
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S2.1.4. Hybrid rotation method 

The hybrid method combines the iterative and explicit methods. It works exactly the same as the 

iterative method described in S2.1.2, except for the generation of the initial concentration matrix . 

As with the iterative method, if a successful rotation has already been performed, it uses that as the 

initial matrix . When that is not the case, it uses the explicit method to generate the initial matrix 

. This usually gives significantly quicker convergence for the method, though the final results are the 

same. We generally recommend the use of the hybrid method. 

S2.2. Validation of EFA implementation relative to the original 

In order to ensure our implementation of the EFA method matched that described in (Meisburger et 

al., 2016), the original data and Matlab (The MathWorks) scripts used in that paper were obtained 

from Dr. Meisburger. Using the same buffer subtraction, total frame range, component limits, and 

convergence settings (not constraining C>0, 10000 iterations, iterative mode), we obtained essentially 

identical results, as shown in Figure S6. The scattering profiles overlap at all q, and the Rg values 

agree to two decimal places. We suspect that the minor differences (most visible in the high q region) 

are due to differences in underlying numerical methods implemented in numpy and Matlab. 

S2.3. Our experiences on the practical limitations of EFA 

The strength of EFA is that it is model independent, that is, there are no assumptions about the peak 

shape (such as the Gaussian and modified Gaussian shapes used in US-SOMO (Brookes et al., 2013, 

2016)) or scattering profile (such as a linear Guinier region assumed in DELA (Malaby et al., 2015)). 

This makes it complimentary to the other methods, and able to provide independent validation of the 

deconvolved scattering profiles. However, it does have practical limitations (which may improve as 

the method becomes more refined). Based on our experience we have found: 

1) EFA works best with flat baseline regions on both sides of the region to be deconvolved. If it 

is not clear that all singular values have returned to baseline, the deconvolution is more prone 

to failure, and can have very large chi-squared values at the edges. 

2) EFA works best on subtracted profiles. 

3) As a consequence of the previous limitation, EFA is not suitable for deconvolution of 

measurements with a changing baseline, such as may be cause by capillary fouling. 

Based on limited analysis of sample data sets, we have found that EFA yields broadly similar results 

to US-SOMO when deconvolving overlapping peaks. A detailed comparison of these two methods is 

beyond the scope of this paper. 

S3. Supporting References 
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All references included in the sup are in the references section in the main paper. 

S4. Supporting Figures 

 

Figure S1 The manipulation panel and main plots in the RAW software with Lysozyme and 

Glucose Isomerase data loaded. 

  



Journal of Applied Crystallography   computer programs 

8 

 

 

Figure S2 The Guinier fit window, which allows interactive and automated fitting. 
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Figure S3 The GNOM window for determining IFTs by that method.  
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Figure S4 The IFT plot and control panel showing GNOM generated IFTs for Lysozyme and 

Glucose Isomerase. 
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Figure S5 The AMBIMETER window, which shows the results of an ambiguity assessment of the 

scattering profile and allows the user to save the matching low resolution shapes from the assessment 

library. 
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Figure S6 This figures shows scattering profiles extracted from overlapping SEC-SAXS data for 

phenylalanine hydroxylase. The blue curve (mostly hidden under the red curve) shows the EFA 

results obtained using the Matlab program described in (Meisburger et al., 2016), while the red curve 

shows the essentially identical results obtained in RAW. Additionally, the Rg for both curves agrees to 

two decimal places, further supporting that the results are functionally identical.  
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S5. Supporting Tables 

Table S1 This table shows the molecular weight values calculated by the SAXS MoW2 online 

calculator and the adjusted Porod volume method of RAW. For protein database IDs that start with 

SAS, the scattering curves were taken from the SASBDB database (https://www.sasbdb.org/), the 

HS104P protein was taken from the BIOISIS database (http://www.bioisis.net/). For the HS104P 

protein the scattering profile labelled wtD1merged was used. All results given are for identical 

Guinier regions used in RAW and the SAXS MoW2 calculator (http://saxs.ifsc.usp.br/, accessed 

27/03/2017). All results are for identical Guinier regions used in RAW and the MoW2 calculator. 

Protein Database ID Maximum q (Å-1) MoW2 MW (kDa) RAW MW (kDa) Ratio RAW/MoW2 

HS104P 0.20 866.4 860.3 0.9930 

 0.30 861.8 855.4 0.9926 

 0.40 841.7 837.4 0.9949 

SASDAN7 0.20 491.6 491.5 0.9998 

 0.30 463.4 464.0 1.0013 

 0.40 430.4 430.8 1.0014 

SASDA59 0.20 180.4 180.8 1.0022 

 0.30 163.9 164.3 1.0024 

 0.40 162.8 167.7 1.0301 

SASDAK6 0.20 164.5 164.6 1.0006 

 0.30 170.6 170.6 1.0000 

 0.40 166.7 166.8 1.0006 

SASDB26 0.20 90.5 90.5 1.0000 

 0.30 77.6 77.7 1.0013 

 0.40 69.9 70.1 1.0014 

SASDBS6 0.20 61.6 61.7 1.0016 

 0.30 53.3 53.3 1.0000 

 0.40 49.7 49.7 1.0000 

SASDBP4 0.20 28.9 28.6 0.9896 

 0.30 25.6 25.3 0.9883 

 0.40 23.6 23.4 0.9915 

https://www.sasbdb.org/
http://www.bioisis.net/
http://saxs.ifsc.usp.br/
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SASDAC2 0.20 8.6 8.6 1.0000 

 0.30 8.8 8.8 1.0000 

 0.40 8.5 8.6 1.0118 
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Table S2 This table shows the molecular weight values calculated by ScÅtter and RAW using the 

volume of correlation method. For protein database IDs that start with SAS, the scattering curves were 

taken from the SASBDB database (https://www.sasbdb.org/), the HS104P protein was taken from the 

BIOISIS database (http://www.bioisis.net/). For the HS104P protein the scattering profile labelled 

wtD1merged was used. All results given are for identical Guinier regions used in RAW and ScÅtter. 

Protein Database ID Maximum q  (Å-1) ScÅtter MW (kDa) RAW MW (kDa) Ratio RAW/ ScÅtter 

HS104P 0.3 835.5 835.8 1.0004 

 0.4 830.5 811.4 0.9770 

SASDAN7 0.3 428.3 428.3 1.0000 

 0.4 421.7 397.5 0.9426 

SASDA59 0.3 160.5 160.4 0.9994 

 0.4 158.7 153.0 0.9641 

SASDAK6 0.3 143.6 143.6 1.0000 

 0.4 142.6 137.5 0.9642 

SASDB26 0.3 59.0 59.0 1.0000 

 0.4 57.5 52.0 0.9043 

SASDBS6 0.3 46.3 46.3 1.0000 

 0.4 45.1 41.5 0.9202 

SASDBP4 0.3 23.9 23.9 1.0000 

 0.4 23.2 21.0 0.9052 

SASDAC2 0.3 11.2 11.2 1.0000 

 0.4 10.9 9.1 0.8349 

 

https://www.sasbdb.org/
http://www.bioisis.net/

