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1 Stability of the method

Here we study the stability of the method. In order to do so, we will put
ourselves in a very simplistic framework. More precisely, we will consider a one-
dimensional problem, with a molecule consisting of a single atom placed at the
origin. Without loos of generality, we will assume that our experimental density
is band-limited with the highest frequency written as a cosine function with an
arbitrary phase shift φ,

da(x) = cos(2πω(x− φ)) ω ∈ (0, 1). (1)

In this case, one can show that the CCF can be written as follows,

CCFcos(τ, y) = CCFcos(τ−y) = cos(2πω(τ+φ−y)) exp(−σ22π2ω2) ω ∈ (0, 1),
(2)

where y is the off-grid displacement. Suppose now that we apply the quadratic
approximation method starting from a given value of τ . By using (??), one can
see that the quadratic approximation of the CCF can be written as follows,

˜CCF cos(τ, y) = CCFcos(τ) + 2πωCCFsin(τ)y − 2π2ω2CCFcos(τ)y2. (3)

The derivation of CCFcos and CCFsin can be found in Appendix.
Now, we will find an interval in which our method can effectively reduce the

fitting error of an in-grid exhaustive search. Let us first introduce the in-grid
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pose τ IG and the best off-grid pose τOF , which can be written as follows,

τOF
j =

j

ω
− φ ∀j ∈ Z, ω ∈ (0, 1). (4)

Our method seeks for the off-grid displacement y that reduces the distance
between τ IG−y and τOG. As me mentioned in the main text, we observed that
it is preferable to have a concave cost function ˜CCF cos(τ, ·). By using (??) and
(??), one can show that this is the case if and only if CCFcos(τ, 0) > 0, meaning
that

τ IG ∈
(

4j − 1

4ω
− φ, 4j + 1

4ω
− φ

)
∀j ∈ Z, ω ∈ (0, 1). (5)

Let now express the fitting error reduction of our method. In order to do so,
we will use a classical proof of the Newton’s method convergence rate. The
idea is to use a first order Taylor’s series of the first derivative of (??) around
τOF = τ IG − y∗,

∂yCCFcos(τ
IG−y∗) = ∂yCCFcos(τ

IG)−y∗∂2yCCFcos(τ
IG)+

(y∗)2

2
∂3yCCFcos(τ

IG−ξ), ξ ∈ (0, y∗j ).

(6)
Since τOF is the optimal pose, the derivative of the CCF is null at τOF . Then
we divide (??) by the second derivative of the CCF to obtain the following
equality,

y∗ − ∂yCCFcos

∂2yCCFcos
(τ IG) =

(y∗)2

2

∂3yCCFcos(τ
IG − ξ)

∂2yCCFcos(τ IG)
, ξ ∈ (0, y∗j ). (7)

Let us recall that
∂yCCFcos

∂2
yCCFcos

(τ IG) is the solution given by our off-grid search

method, thus the fitting error produced by our method can be written as follows,

E(τ IG) = |y∗ − y| =
∣∣∣∣∣∂3yCCFcos(τ

IG − ξ)
2∂2yCCFcos(τ IG)

∣∣∣∣∣ (y∗)2, ξ ∈ (0, y∗). (8)

The second and the third derivatives can be computed by integration by parts
(see Appendix for more detail), and then we find the following equality,

E(τ IG) = |y∗ − y| =
∣∣∣∣2πω sin(2πω(τ IG + φ− ξ))

cos(2πω(τ IG + φ))

∣∣∣∣ (y∗)2, ξ ∈ (0, y∗). (9)

We now aim at bounding E(τ IG). First, note that since τOF = τ IG − y∗ and
using (??), we can write the following inequalities,

4j − 1

4ω
<
j

ω
= τ IG + φ− y < τ IG + φ− ξ < τ IG + φ ≤ 4j + 1

4ω
(10)

We know that on such an interval, sin(2πω·) is a strictly increasing function,
therefore, we have the following identity,

sin(2πω(τ IG + φ− ξ)) < sin(2πω(τ IG + φ)). (11)
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Finally, our fitting error can be bounded as follows,

E(τ IG) = |y∗−y| <
∣∣∣∣2πω sin(2πω(τ IG + φ))

cos(2πω(τ IG + φ))

∣∣∣∣ (y∗)2 < 2π
∣∣tan(2πω(τ IG + φ))

∣∣ωh2,
(12)

where h is the grid spacing. This is a very conservative estimation, provided
that we can bound the tangent function by shrinking the allowed interval of
τ IG + φ. Nonetheless, this estimation clearly demonstrates that the error of
the method is linearly proportional to the highest frequency of the map (or
inversely proportional to its resolution), and quadratically proportional to the
grid spacing. Following this result, we can provide the following asymptotic
approximation of the fitting error,

E(τ IG) ≈ O(ωh2). (13)

Appendix. Analytical formulae for the CCF of a
sinusoidal function

Here we focus on computing the following integrals,

CCFcos(τ, 0) =
1√

2πσ2

∫
R

cos(2πω(x− φ)) exp

(
− (x+ τ)2

2σ2

)
dx

CCFsin(τ, 0) =
1√

2πσ2

∫
R

sin(2πω(x− φ)) exp

(
− (x+ τ)2

2σ2

)
dx

, (14)

which are the real and the imaginary parts of the following integral,

1√
2πσ2

∫
R

exp(2iπω(x− φ)) exp

(
− (x+ τ)2

2σ2

)
dx. (15)

This integral is the Fourier transform of a Gaussian evaluated at −ω, or equiv-
alently at ω, since the Fourier transform of a real valued function is Hermitian.
Thus by using the translation property of the Fourier Transform and by recall-
ing that the Fourier transform of a Gaussian is a scaled Gaussian, we get the
following identity,

1√
2πσ2

∫
R

exp(2iπω(x− φ)) exp

(
− (x+ τ)2

2σ2

)
dx =

exp(−2iπω(τ + φ)) exp(−σ22π2ω2).

(16)

Finally, we get the two following identities,

CCFcos(τ, 0) = cos(2πω(τ + φ)) exp(−σ22π2ω2)

CCFsin(τ, 0) = − sin(2πω(τ + φ)) exp(−σ22π2ω2)
. (17)
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Figure S1: RMSD as a function of the angular sampling distance for fitting a
subunit of the GroEL complex to simulated EDMs of different resolutions. (a)
: Resolution 5 Å. (b): Resolution 11 Å. (c) : Resolution 15 Å. (d): Resolution
21 Å. Red : Fitting with off-grid optimization. Blue: Fitting without off-grid
optimization.
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(a) Resolution : 5Å
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(b) Resolution : 11Å
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(c) Resolution : 15Å
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Figure S2: RMSD as a function of the angular sampling distance for fitting
a subunit of the GroEL complex at different model resolutions to a simulated
EDM of 11 Å resolution. (a) : Model resolution 1 Å. (b): Model resolution 2
Å. (c) : Model resolution 3 Å. (d): Model resolution 4 Å. Red : Fitting with
off-grid optimization. Blue: Fitting without off-grid optimization.
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(a) σ = 1 Å
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(b) σ = 2 Å
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(c) σ = 3 Å
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Figure S3: RMSD as a function of the total number of sampled translations for
different model resolutions. (a) : Model resolution 1 Å. (b): Model resolution 2
Å. (c) : Model resolution 3 Å. (d): Model resolution 4 Å. Blue : Fitting without
off-grid optimization. Red: Fitting with off-grid optimization.
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(a) σ = 1 Å
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(b) σ = 2 Å
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(c) σ = 3 Å
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(d) σ = 4 Å
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