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In Sec[] some important issues concerning small-angleestag (SAS) are discussed. In SEG. Il general
remarks about SAS from mass fractals are presented. IfiB#we influence of polydispersity on SAS curves
from surface fractals, is shown, and in 9ed. IV is presentiigliae with a power-law distribution of balls.

I.  THEORETICAL BACKGROUND FOR SMALL-ANGLE F(q) — F(q)exp(—iq - a).

SCATTERING iii) Rotation: if the particle is rotated with an orthogonal ma-

trix r — Or thenF(q) — F(O"q). Recall that the in-
In a very good approximation, the differential cross sec-verse of an orthogonal matrix is equal to the transpose of it

tion of a sample exposed to a beam of neutrons, X-rays op—! = OT, where(OT)ij = Oji.
light is given by [1[2]do/dQ = |A(q)%, whereA(q) =  iv) Additivity of the nonnormalized scattering amplitude: if a
[y ps(r)e’md3r s the total scattering amplitud®,’ is the  particle consists of two not overlapping subsieésd1l, then
total volume irradiated by the incident beam, and the seatte F'(q) = (Vi Fr(q) + VitFu(q)) /(Vi + Vin).

ing length densitys(r) is defined with the help of Dirac’s h Il directi fth . :
function: p, (r) = -, b;d(r — r;). Here,r; are the positions The average over all directions of the scattering vegtior

of microscopic objects like atoms or nuclei with the scatigr .Eq' Cl.) is analogo_us to diffraction with an uncollimated ibea
lengthsb; . in optics [4]: the interference patterns of plane waves, com

Let us consider a sample consisting of rigid homogeneou g from different directions, superimpose upon each other

objects of the density,,,, which are immersed into a solid ma- h(ijs I’eer'HtS in stlrongoatial incoheregce : foLthe subsets
trix of densityp,, and suppose that their spatial positions an?Nd/. the correlator £y (q) F (q)) decays wheq > 2 /r,

orientations are uncorrelated (this assumes that the otiace V[éher_?r:“_ is_ gf o;derthof tt)he ddistbar][ce bett\geen r:heir tcentt_ers
tion of the objects in the solid matrix is low enough). Thea th [4]: This indicates the border between the coherent regime

scattering intensity (differential cross section per woiume (where the scatteringmplitudes V7 F; and Vi Fiy should be
of the sample) can be written as added) and incoherent regime (where the scattdnitensi-

ties (|V7F|?) and (|Vi; Fiz|?) should be added). This can
1 do o o ) be illustrated by a simple example of the SAS intensity from
Iq) = 7 9 = nlAslV <|F(Q)| > ; (1) two point-like objects, placed rigidly the distantapart. If

each of them has the unit amplitude, the intensity is wrigten

wheren is the concentration of the objects in the irradiated/(q) = (]e’?™ + ¢'2™2|2), which yields after averaging over

volume, Ap = pn, — pp IS the scattering contrast] is the  the solid angle

volume of each object an#l(q) is the normalized scattering

amplitude (form factor) of the object

B sin gl
F(q)z%/ve‘iq"“dr, @) I(q)—Q(H " ) 3)

obeying the condition(0) = 1. Here, the symbol---) -
stands for the ensemble averaging over all orientationseof t A fast decay of the coherence can be seen from[Fig. 1 when
objects. If the probability of any orientation is the sanert ¢/ > 2.

it can be calculated by integrating over all directions af th For a “primary” object like a ball or cube of total sie

scattering vectog [3]. : ’ o . o
Itis easy to derive a few useful properties of the form factorthe intensity(|'(q)|") is of order one in the Guinier range

e

(@), which are valid for a particle of arbitrary shape. [QES 2m/l and decays at/q" in the Porod range 2, 2r/1

i) Scaling: if we scale all the lengths of the particld as 5! I

thenF(q) — F(Bq). Almost all scattering properties of a complex object can be

ii) Translation: if the particle is translated — r + a then understood by means of the above Simp|e properties of com-
posing “primary” objects and transitions from coherentrto i
coherent scattering regimes. In the next section, we autlin

and explain some basic properties of mass and surface frac-
* e-mail:{cherny@theor.jinr.iu tals.
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FIG. 1. (Color online) The SAS intensitfzl(3) from an ensemifie

two point-like objects with unit amplitude, placed rigidigie d's FIG. 2. (Color online) Generic normalized SAS intensitynfranass

rT?ractals with a single scale (solid black line). The intépsihows
the presence of the four main regimes: Guinier (at s@alfractal
(at intermediatey), plateau (at largeg), and Porod (at high). The
characteristic lengthg, d, andl are explained in the text. The blue
dashed line shows the approximation of completely uncated| pri-
mary objects, composing the mass fractal. The scatterirmsity

of the object (like cube or ball) consists of the Guinier aroide
regions only. Note that a typical experimental SAS tool lresdy-
namic Q-rang&ma=/gmi» about two or three orders, so only a part
of the shown curve can be observed in practice.

the coherent regime/[¢) = 4] to the incoherent regimd[q) = 2]
wheng > 2x/l: only a very few minima and maxima with decay-
ing amplitudes are quite pronounced. The fast decay of tireledor
(e'?(r2=71)) is due to the average over all directions of the scatter-
ing vectorg, which is analogous to diffraction with an uncollimated
beam in optics_|4]: the interference patterns of plane wavesing
from different directions, superimpose upon each otheis Tésults

is the same as if the strong spatial incoherence of the intigeam

is realized.

1.  AMASS FRACTAL WITH A SINGLE SCALE

/(aS)

1 001: Surface fractalatm =3
The scattering properties of mass fractals with a singllesca F— T Mass fractal at m = 1
were studied in detail in the previous publicatiddd |4, 6]. "Q\
For a mass fractal of the total lengthcomposed of small N 3‘ M
“primary” structural units of sizé separated by distancds =~ 10° %fraacstsal
(I < d < L), the normalized form factor can be estimated _ g Jatm=2
qualitatively by the formula =~ ; k
o] ~q
1, qs2n/L, 107+ Mass
Do j B,=0.45 fractal
<|F(m)(q)|2>: (qL/Q’/T) s 27T/L§qu27r/d; 1 (Ds=2.6) atm=3
(d/L)P= 2m/d < q S 2/l
4 < 10-9-""'I T MR | T Ty T T T
(d/L (ql/27T) , 21/l S g, @ 10° 10" 102 10°
(see Fig[R). Here is of the order of L /d)”= in accordance qL

with the definition of the fractal dimension.
Such a fractal can be constructed with a simple iteration
rule (an example is the Cantor dust): a “primary” object like FIG. 3. (Color online) Polydisperse scattering with refatvariance
a ball or cube or another simple shape generamisjects of o = 0-4.
the same shape but of the size scaled by the fattowhich
is smaller than one in general. The initial single objectdze
iteration) has the size of ordeg. Then aftem iterations, the We make a few remarks here. First, the intensity in the
total number of the objects is equalie= £, and they all are ~ Guinier range is actually parabolit(q) ~ I(0)(1—-RZ?¢*/3),
put somehow inside a form of the total size The distances whereR, is the radius of gyration. This parabolic behavior of
between the objects and their sizes are of odder 5" L and  the intensity is ignored in the above estimations for theesak
l = BI'ry, respectively. The mass fractal has the Hausdorfof simplicity. Second, thenass fractal region appears due to
dimensionD,,, obeying the reIauor[[?WDm =1. atial correlations between the composing “primary” units
Equation[(%) explicitly shows that the SAS intensity ofmassﬁ l] For this reason, the fractal region of the mass frac-
fractal is characterized by the four main regions: Guinier atal is determined by the maximal and minimal distances be-
q < 2w/L, fractal a2n /L < ¢ < 27/d, aplateau a?n/d < tween the centers of the structural units. Third, the platga
q < 27/l, and Porod regime at > 2w /1. 2w /d < g < 2w/l in the scattering intensity can be consid-



when the polydispersity is developéd [4, 6].

lll. POLYDISPERSE FRACTAL FORM FACTOR

In most cases, a real system consists of fractals of various
sizes and forms (polydispersity). We can model polydisper-
sity by considering an ensemble of the fractals with diffiere
lengthsl of the initial cube taken at random (that ids here
the length of the initial cube and the ratit is held constant
over the ensemble. Note that in the previous sections, we de-
note the length of the initial cubg, while in the presence of
polydispersity,L is the mean value of the cube length over the
ensemble.

The distribution functionD y (1) of the fractal sizes is de-
fined in such a way thdDy (1)d! gives the probability of find-
ing a fractal whose size falls within the randel(+ di). We
consider here quite common log-normal distribution
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FIG. 4. (Color online) A set of balls distributed over sizes.

ered as a Guinier region for the primary unit (which is of the
same sizd), because the spatial correlations between differ- 1

ent units are not important in this region, and thus the total Dn(l) = P ICIRYYE) exp (
intensity is equal t@ times the intensity of the primary unit oi(2m)
(see the discussion in S&t. 1). For the normalized intesity
primary globular unit of sizé, one can adopt the Porod-law
relation

wheres = [log(1 + ¢2)]'/2. The quantitied, ando, are the
mean length and its coefficient of variation (that is, theorat
the standard deviation of the length to the mean lengthgdal
also relative variance

Qmmw>~{? L EEh L=Wp. o= (2, - )L @)

ql/2m)~%, 27/l <q.
where ( =
Egs. [1) and H(3))
As discussed above, it coincides with the last two rows inFi9.[3)

Eq. (8) up to the factofd/L) = = 1/p, which appears due to

the chosen normalization of the total intensity of masstéiac Ir(;f) (@) =n |Ap| <‘F(s) ‘ > 2()Dy(1)dl, (8)

at zero momentum. The latter is equaptdtimes the intensity

of the primary unit (the coherent regime). Then neglectihg a

the spatial correlationbetween the primary objects (units), where ) (g) is the scattering amplitude of the Cantor-like

composing the fractal, yields the scattering intensitywahno surface fractal, given by Eq. (18) of the main paper.

by the dashed (blue) line in Figl 2. Fourth, the “pure” power-

law functions with different exponents, given by Eq. (4) and

shown in Fig[®, is a simplification of an actual behaviour of IV." RANDOM DISTRIBUTION OF BALLS

the intensity. Actually, there is a complex pattern of maxim

and minima superimposed on the power-law decays. How- A typical set of balls whose radii follow some distribution

ever, this pattern is smeared and can disappear completeily displayed in Fi§}4.

I )dl. Therefore, by using
the polydlsperse intensity becomes (see
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