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In Sec. I some important issues concerning small-angle scattering (SAS) are discussed. In Sec. II general
remarks about SAS from mass fractals are presented. In Sec. III the influence of polydispersity on SAS curves
from surface fractals, is shown, and in Sec. IV is presented afigure with a power-law distribution of balls.

I. THEORETICAL BACKGROUND FOR SMALL-ANGLE
SCATTERING

In a very good approximation, the differential cross sec-
tion of a sample exposed to a beam of neutrons, X-rays or
light is given by [1, 2]dσ/dΩ = |A(q)|

2, whereA(q) ≡
∫

V ′
ρs(r)e

iq·rd3r is the total scattering amplitude,V ′ is the
total volume irradiated by the incident beam, and the scatter-
ing length densityρs(r) is defined with the help of Dirac’sδ
function:ρs(r) =

∑

j bjδ(r − rj). Here,rj are the positions
of microscopic objects like atoms or nuclei with the scattering
lengthsbj.

Let us consider a sample consisting of rigid homogeneous
objects of the densityρm, which are immersed into a solid ma-
trix of densityρp, and suppose that their spatial positions and
orientations are uncorrelated (this assumes that the concentra-
tion of the objects in the solid matrix is low enough). Then the
scattering intensity (differential cross section per unitvolume
of the sample) can be written as

I(q) ≡
1

V ′

dσ

dΩ
= n|∆ρ|2V 2

〈

|F (q)|
2
〉

, (1)

wheren is the concentration of the objects in the irradiated
volume,∆ρ = ρm − ρp is the scattering contrast,V is the
volume of each object andF (q) is the normalized scattering
amplitude (form factor) of the object

F (q) =
1

V

∫

V

e−iq·rdr, (2)

obeying the conditionF (0) = 1. Here, the symbol〈· · · 〉
stands for the ensemble averaging over all orientations of the
objects. If the probability of any orientation is the same, then
it can be calculated by integrating over all directions of the
scattering vectorq [3].

It is easy to derive a few useful properties of the form factor
(2), which are valid for a particle of arbitrary shape.
i) Scaling: if we scale all the lengths of the particle asl → βl
thenF (q) → F (βq).
ii) Translation: if the particle is translatedr → r + a then
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F (q) → F (q) exp(−iq · a).
iii) Rotation: if the particle is rotated with an orthogonal ma-
trix r → Ôr thenF (q) → F (ÔT

q). Recall that the in-
verse of an orthogonal matrix is equal to the transpose of it
Ô−1 = ÔT, where(ÔT)ij = Ôji.
iv) Additivity of the nonnormalized scattering amplitude: if a
particle consists of two not overlapping subsetsI andII, then
F (q) =

(

VIFI(q) + VIIFII(q)
)

/(VI + VII).

The average over all directions of the scattering vectorq in
Eq. (1) is analogous to diffraction with an uncollimated beam
in optics [4]: the interference patterns of plane waves, com-
ing from different directions, superimpose upon each other.
This results in strongspatial incoherence [5]: for the subsetsI
andII, the correlator〈FI(q)FII (q)〉 decays whenq ≫ 2π/r,
where r is of order of the distance between their centers
[4]. This indicates the border between the coherent regime
(where the scatteringamplitudes VIFI andVIIFII should be
added) and incoherent regime (where the scatteringintensi-
ties 〈|VIFI |

2〉 and 〈|VIIFII |
2〉 should be added). This can

be illustrated by a simple example of the SAS intensity from
two point-like objects, placed rigidly the distancel apart. If
each of them has the unit amplitude, the intensity is writtenas
I(q) = 〈|eiq·r1 + eiq·r2 |2〉, which yields after averaging over
the solid angle

I(q) = 2

(

1 +
sin ql

ql

)

. (3)

A fast decay of the coherence can be seen from Fig. 1 when
ql ≫ 2π.

For a “primary” object like a ball or cube of total sizel,
the intensity〈|F (q)|2〉 is of order one in the Guinier range
q . 2π/l and decays as1/q4 in the Porod rangeq & 2π/l
[1].

Almost all scattering properties of a complex object can be
understood by means of the above simple properties of com-
posing “primary” objects and transitions from coherent to in-
coherent scattering regimes. In the next section, we outline
and explain some basic properties of mass and surface frac-
tals.
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FIG. 1. (Color online) The SAS intensity (3) from an ensembleof
two point-like objects with unit amplitude, placed rigidlythe dis-
tancel apart but randomly oriented. One can see the transition from
the coherent regime [I(q) = 4] to the incoherent regime [I(q) = 2]
whenq ≫ 2π/l: only a very few minima and maxima with decay-
ing amplitudes are quite pronounced. The fast decay of the correlator
〈eiq·(r2−r1)〉 is due to the average over all directions of the scatter-
ing vectorq, which is analogous to diffraction with an uncollimated
beam in optics [4]: the interference patterns of plane waves, coming
from different directions, superimpose upon each other. This results
is the same as if the strong spatial incoherence of the incident beam
is realized.

II. A MASS FRACTAL WITH A SINGLE SCALE

The scattering properties of mass fractals with a single scale
were studied in detail in the previous publications [4, 6].

For a mass fractal of the total lengthL, composed ofp small
“primary” structural units of sizel separated by distancesd
(l . d ≪ L), the normalized form factor can be estimated
qualitatively by the formula

〈

|F (m)(q)|2
〉

≃























1, q . 2π/L,

(qL/2π)−Dm , 2π/L . q . 2π/d,

(d/L)Dm , 2π/d . q . 2π/l,

(d/L)Dm(ql/2π)−4, 2π/l . q,
(4)

(see Fig. 2). Herep is of the order of(L/d)Dm in accordance
with the definition of the fractal dimension.

Such a fractal can be constructed with a simple iteration
rule (an example is the Cantor dust): a “primary” object like
a ball or cube or another simple shape generatesk objects of
the same shape but of the size scaled by the factorβs, which
is smaller than one in general. The initial single object (zero
iteration) has the size of orderr0. Then aftern iterations, the
total number of the objects is equal top = kn, and they all are
put somehow inside a form of the total sizeL. The distances
between the objects and their sizes are of orderd = βn

s L and
l = βn

s r0, respectively. The mass fractal has the Hausdorff
dimensionDm obeying the relation [7]kβDm

s = 1.
Equation (4) explicitly shows that the SAS intensity of mass

fractal is characterized by the four main regions: Guinier at
q . 2π/L, fractal at2π/L . q . 2π/d, a plateau at2π/d .
q . 2π/l, and Porod regime atq & 2π/l.
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FIG. 2. (Color online) Generic normalized SAS intensity from mass
fractals with a single scale (solid black line). The intensity shows
the presence of the four main regimes: Guinier (at smallq), fractal
(at intermediateq), plateau (at largerq), and Porod (at highq). The
characteristic lengthsL, d, andl are explained in the text. The blue
dashed line shows the approximation of completely uncorrelated pri-
mary objects, composing the mass fractal. The scattering intensity
of the object (like cube or ball) consists of the Guinier and Porod
regions only. Note that a typical experimental SAS tool has the dy-
namic Q-rangeqmax/qmin about two or three orders, so only a part
of the shown curve can be observed in practice.

FIG. 3. (Color online) Polydisperse scattering with relative variance
σr = 0.4.

We make a few remarks here. First, the intensity in the
Guinier range is actually parabolic:I(q) ≃ I(0)(1−R2

gq
2/3),

whereRg is the radius of gyration. This parabolic behavior of
the intensity is ignored in the above estimations for the sake
of simplicity. Second, themass fractal region appears due to
spatial correlations between the composing “primary” units
[4, 6]. For this reason, the fractal region of the mass frac-
tal is determined by the maximal and minimal distances be-
tween the centers of the structural units. Third, the plateau at
2π/d . q . 2π/l in the scattering intensity can be consid-
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FIG. 4. (Color online) A set of balls distributed over sizes.

ered as a Guinier region for the primary unit (which is of the
same sizel), because the spatial correlations between differ-
ent units are not important in this region, and thus the total
intensity is equal top times the intensity of the primary unit
(see the discussion in Sec. I). For the normalized intensityof
primary globular unit of sizel, one can adopt the Porod-law
relation

〈

|F0(q)|
2
〉

≃

{

1, q . 2π/l,

(ql/2π)−4, 2π/l . q.
(5)

As discussed above, it coincides with the last two rows in
Eq. (4) up to the factor(d/L)Dm = 1/p, which appears due to
the chosen normalization of the total intensity of mass fractal
at zero momentum. The latter is equal top2 times the intensity
of the primary unit (the coherent regime). Then neglecting all
the spatial correlationsbetween the primary objects (units),
composing the fractal, yields the scattering intensity shown
by the dashed (blue) line in Fig. 2. Fourth, the “pure” power-
law functions with different exponents, given by Eq. (4) and
shown in Fig. 2, is a simplification of an actual behaviour of
the intensity. Actually, there is a complex pattern of maxima
and minima superimposed on the power-law decays. How-
ever, this pattern is smeared and can disappear completely

when the polydispersity is developed [4, 6].

III. POLYDISPERSE FRACTAL FORM FACTOR

In most cases, a real system consists of fractals of various
sizes and forms (polydispersity). We can model polydisper-
sity by considering an ensemble of the fractals with different
lengthsl of the initial cube taken at random (that is,l is here
the length of the initial cube and the ratiol/r0 is held constant
over the ensemble. Note that in the previous sections, we de-
note the length of the initial cubeL, while in the presence of
polydispersity,L is the mean value of the cube length over the
ensemble.

The distribution functionDN (l) of the fractal sizes is de-
fined in such a way thatDN (l)dl gives the probability of find-
ing a fractal whose size falls within the range (l, l + dl). We
consider here quite common log-normal distribution

DN (l) =
1

σl(2π)1/2
exp

(

−
[log(l/L) + σ2/2]2

2σ2

)

, (6)

whereσ = [log(1 + σ2
r )]

1/2. The quantitiesL andσr are the
mean length and its coefficient of variation (that is, the ratio of
the standard deviation of the length to the mean length), called
also relative variance

L ≡ 〈l〉D , σr ≡ (
〈

l2
〉

D
− L2)1/2/L, (7)

where 〈· · · 〉D ≡
∫

∞

0 · · ·DN(l)dl. Therefore, by using
Eqs. (1) and (6) the polydisperse intensity becomes (see
Fig. 3)

I(s)m (q) = n |∆ρ|
2
∫

∞

0

〈

∣

∣

∣
F (s)
m (q)

∣

∣

∣

2
〉

V 2
m(l)DN(l)dl, (8)

whereF (s)
m (q) is the scattering amplitude of the Cantor-like

surface fractal, given by Eq. (18) of the main paper.

IV. RANDOM DISTRIBUTION OF BALLS

A typical set of balls whose radii follow some distribution
is displayed in Fig 4.
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