Supplementary Material

Joint SAXS/SANS Data Analysis of Asymmetric Lipid Vesicles

Barbara Eicher, Frederick A. Heberle, Drew Marquardt, Gerald N. Rechberger, John Katsaras, Georg Pabst

1 Determination of the bilayer lipid composition via GC/MS and UPLC

The determination of the total bilayer composition has been described in detail previously by [2]. For completeness, we summarize its main features below. Lipid mixture composition can be determined by gas chromatography and mass spectrometry (GC/MS) and ultra performance liquid chromatography and mass spectrometry (UPLC-MS). For GC/MS it is necessary that there are chemical or isotopic differences between chains of the constituent lipids while for UPLC-MS a difference in lipid mass is sufficient. For GC/MS (UPLC-MS) the mole fraction χ_{i} of a single component can be determined directly from a set of chain (lipid) peak areas P :

$$
\begin{equation*}
\chi_{i}=\frac{P_{i}}{\sum_{j} P_{j}}, \tag{1}
\end{equation*}
$$

where P_{i} represents the $i^{\text {th }}$ chain (lipid) peak area and the denominator is the sum over all mixture components j. This relationship is strictly valid when the chain (lipid) peak area fractions vary linearly with mixture composition. A slight deviation from linearity was found which lead to the use of a standard curves (see [2] for details). UPLC-MS data was corrected by a calibration curve of 1:1:1 mole ratio of DPPC/POPC/POPG composition. In brief, samples of $0.1-100 \mu \mathrm{~g}$ with identical mole ratios of these three components were measured, peak areas integrated and an over all measurements averaged correction factor determined depending on the detectability of the single lipids. Parameter uncertainties are estimated to be less than 5%. Lipid analysis for the isotopically asymmetric samples was conducted using GC/MS (for details see [2]) and for chemically asymmetric samples was performed by UPLC-MS. UPLC-MS measurements were conducted by using an AQUITY-UPLC system (Waters, Manchester, UK) equipped with a BEH-C18-column ($2.1 \mathrm{x} 150 \mathrm{~mm}, 1.7 \mu \mathrm{~m}$) (Waters) was used for sample separation as previously described [3]. A binary gradient was applied. Solvent A consisted of water/methanol ($1 / 1, \mathrm{v} / \mathrm{v}$), solvent B was 2-propanol. Both solvents contained phosphoric acid (8 $\mu \mathrm{M})$, ammonium acetate (10 mM) and formic acid ($0.1 \mathrm{vol} \%$). A SYNAPT ${ }^{T M} \mathrm{G} 1$ qTOF HD mass spectrometer (Waters) equipped with an ESI source was used for analysis. Data acquisition was done by the MassLynx 4.1 software (Waters), for lipid analysis the 'Lipid Data Analyser' software [1] was used.

2 Evaluation of bilayer asymmetry via ${ }^{1} \mathrm{H}-\mathrm{NMR}$

The evaluation of the bilayer asymmetry was presented in detail in [2]. In short, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were collected on an Avance III 300 or 400 MHz spectrometer (Bruker, Billerica, MA) using the Bruker TopSpin acquisition software, and analyzed with TopSpin 3.2. The paramagnetic lanthanide ion Pr^{3+} interacts with choline protons, shifting their resonance downfield as shown in [2]. By adding Pr^{3+} to a vesicle suspension, the shift is selective for outer leaflet protiated choline, leading to a separate resolution of the protiated choline resonances from the inner and outer leaflet [5]. The integrated area R of each resonance is proportional to the number of molecules having protiated headgroups in the corresponding leaflet. The outer leaflet peak fraction is defined as:

$$
\begin{equation*}
f^{\text {out }}=\frac{R^{\text {out }}}{R^{\text {in }}+R^{\text {out }}}, \tag{2}
\end{equation*}
$$

where the superscripts 'out' and 'in' indicate the outer and inner leaflet. When all lipids posses protiated headgroups, fout directly yields the mole fraction of all bilayer lipids found in the outer leaflet:

$$
\begin{equation*}
X^{o u t}=\frac{\sum_{j} N_{j}^{\text {out }}}{\sum_{j} N_{j}} \equiv f^{o u t} \tag{3}
\end{equation*}
$$

where N and $N^{\text {out }}$ denote the number of molecules in the whole bilayer and in the outer leaflet and the summation is performed over all components of the mixture. For a bilayer with an equal number of lipids in the leaflets $X^{\text {out }}=0.5$. We assumed that $X^{\text {out }}=0.53$ following [4] by assuming a vesicle size of 100 nm and a bilayer thickness of $50 \AA$. For a sample consisting of PC lipids the assay is selective for a single species provided all other components have a deuterated choline to silence their signal. If only one mixture component possesses a protiated choline we define the single-component outer leaflet peak fraction $f_{i}^{o u t}$ as:

$$
\begin{equation*}
f_{i}^{\text {out }}=\frac{N_{i}^{\text {out }}}{N_{i}}=\frac{X^{\text {out }} \chi_{i}^{\text {out }}}{\chi_{i}} \tag{4}
\end{equation*}
$$

where $\chi_{i}^{\text {out }}$ stands for the outer leaflet mole fraction of component i. Combining the two previous equations gives the following expression for the outer leaflet mole fraction of component i :

$$
\begin{equation*}
\chi_{i}^{o u t}=\frac{f_{i}^{\text {out }} \chi_{i}}{f^{o u t}} \tag{5}
\end{equation*}
$$

For a two component bilayer (e.g. lipid A and B), all compositional parameters $\chi_{i}^{\text {out,in }}$ can be expressed as:

$$
\begin{array}{ll}
\chi_{A}^{\text {out }} & =\frac{f_{A}^{o u t} \chi_{A}}{X^{\text {out }}} \\
\chi_{A}^{\text {in }} & =\frac{\left(1-f_{A}^{\text {out }}\right) \chi_{A}}{\left(1-X^{\text {out }}\right)} \tag{6}\\
\chi_{B}^{\text {in }(\text { out })} & =1-\chi_{A}^{\text {in }(\text { out })}
\end{array}
$$

3 Structural Data

Table S1: Structural parameters for symmetric POPC vesicles at $20^{\circ} \mathrm{C}$ obtained from the slab-model. Values in parenthesis are determined by setting $\mathrm{p}_{C G}$ as a fit parameter. SANS data were previously published in [2] and are reanalyzed here.

	Slab $_{\text {SAXS }}{ }^{*}$	$\mathrm{Slab}_{\text {SANS }}{ }^{\dagger}$	$\mathrm{Slab}_{\text {Joint }}{ }^{\ddagger}$
$\mathrm{V}_{\text {lipid }}\left[\AA^{3}\right]$	1247	1247	1247
$\mathrm{~V}_{\text {head }}\left[\AA^{3}\right]$	331	331	331
$\mathrm{~A}_{L}\left(\AA^{\AA}\right)$	$65.3\left(67.6^{\S}\right)$	67.5	$67.5\left(67.5^{\S}\right)$
n_{W}	$8.4\left(8.44^{\S}\right)$	7.9	$9.9\left(8.4^{\S}\right)$
$\mathrm{p}_{C G}$	$1\left(0.77^{\S}\right)$	-	$1\left(0.55^{\S}\right)$
p_{M}	$0.63\left(0.54^{\S}\right)$	-	$0.68\left(0.46^{\S}\right)$
$\chi_{\text {red }}^{2}$	$1.1\left(1.1^{\S}\right)$	94.5	$54.2\left(50.9^{\S}\right)$

[^0]Table S2: Structural parameters of symmetric POPC vesicles $20^{\circ} \mathrm{C}$ determined with the SDP-model. SANS data were previously published in [2] and are reanalyzed here.

	SAXS *	Joint Analysis ${ }_{\text {SANS }}{ }^{\dagger}$	Joint Analysis SANS\&SAXS ‡
$\mathrm{V}_{\text {lipid }}{ }^{\S}\left[\AA^{3}\right]$	1247	1247	1247
$\mathrm{V}_{\text {head }}{ }^{\S}\left[\AA^{3}\right]$	331	331	331
$\mathrm{V}_{P C}{ }^{\S}\left[\AA^{3}\right]$	191.98	191.98	191.98
$\mathrm{V}_{C G}{ }^{\S}\left[\AA^{3}\right]$	139.02	139.02	139.02
$\mathrm{V}_{M N}{ }^{\S}\left[\AA^{3}\right]$	811.37	811.37	811.37
$\mathrm{V}_{M}{ }^{\S}\left[\AA^{3}\right]$	104.63	104.63	104.63
$\mathrm{A}_{L}\left[\AA^{2}\right]$	63.7	66.8	66.3
$\sigma_{P C}$	2.60	2.68	2.62
$\sigma_{C G}$	2.34	2.52	2.55
$\sigma_{M}{ }^{\S}$	2.02	2.02	2.02
$\sigma_{M N}$	5.04	5.13	5.14
$\left\|z_{P C}\right\|$	19.41	18.34	18.94
$\left\|z_{C G}\right\|$	15.38	14.71	14.81
$\left\|z_{M}\right\|^{\S}$	1.00	1.00	1.00
$\left\|z_{M n}\right\|$	14.38	13.71	13.81
$\chi_{\text {red }}^{2}$	0.6	142.2	34.6

[^1]Table S3: Leaflet composition of isotopic aLUVs determined by GC/MS and ${ }^{1} \mathrm{H}-\mathrm{NMR}$. χ_{i} indicates the total bilayer mole fraction, $f_{i}^{o u t}$ (protiated) the fraction of a given component found in the outer leaflet and $\chi^{\text {out }}\left(\chi^{\text {in }}\right)$ represents the mole fraction of all components in outer and inner leaflet. Data were previously published in [2] and are reanalyzed here.

Component	χ_{i}	$\mathrm{f}^{\text {out }}$	$\chi^{\text {out }}$	$\chi_{i}^{\text {in }}$	$\chi_{i}^{\text {out }}$
POPC $^{\text {acc }}$	0.64^{*}	0.29^{\dagger}	0.53^{\ddagger}	$0.96\left(0.45^{\S}\right)$	$0.35\left(0.19^{\S}\right)$
POPC-d44 $^{\text {don }}$	0.36^{*}			$0.04\left(0.02^{\S}\right)$	$0.65\left(0.34^{\S}\right)$
Total	1.00			$1.00\left(0.47^{\S}\right)$	$1.00\left(0.53^{\S}\right)$
POPC-d44 $^{\text {acc }}$	0.62^{*}	0.53^{\ddagger}	$0.83\left(0.40^{\S}\right)$	$0.43\left(0.23^{\S}\right)$	
POPC $^{\text {don }}$	0.38^{*}	0.79^{\dagger}		$0.17\left(0.08^{\S}\right)$	$0.57\left(0.30^{\S}\right)$
Total	1.00			$1.00\left(0.47^{\S}\right)$	$1.00\left(0.53^{\S}\right)$

* from GC/MC
† from ${ }^{1} \mathrm{H}$-NMR
\ddagger calculated for 100 nm vesicles assuming 50 Åbilayer thickness
${ }^{\S}$ total bilayer mole fraction

Table S4: Structural parameters for isotopic asymmetric POPC LUVs at $20^{\circ} \mathrm{C}$ obtained from the slab model. SANS data were previously published in [2] and are reanalyzed here.

	SAXS *	Joint Analysis $_{S A N S^{*}}$	Joint Analysis $_{S_{A N S \& S A X S}}{ }^{*}$
$\mathrm{~V}_{\text {lipid }}\left[\AA^{3}\right]$	1247	1247	1247
$\mathrm{~V}_{\text {head }}\left[\AA^{3}\right]$	331	331	331
$\mathrm{~A}_{L}^{\text {out }}\left[\AA^{2}\right]$	$66.7\left(65.3^{\S}\right)$	$65.4\left(64.6^{\S}\right)$	$65.5\left(63.8^{\S}\right)$
$\mathrm{A}_{L}^{\text {in }}\left[\AA^{2}\right]$	$66.7\left(68.3^{\S}\right)$	$65.4\left(66.6^{\S}\right)$	$65.5\left(67.8^{\S}\right)$
$\mathrm{n}_{W_{\text {out }}}$	$13\left(12.6^{\S}\right)$	$4.7\left(2.3^{\S}\right)$	$6.4\left(4.6^{\S}\right)$
$\mathrm{n}_{W_{\text {in }}}$	$7.0\left(7.4^{\S}\right)$	$4.6\left(6.2^{\S}\right)$	$6.4\left(8.6^{\S}\right)$
$\mathrm{p}_{C G}$	$1.0\left(1.0^{\S}\right)$	-	$1.0\left(1.0^{\S}\right)$
p_{M}	$0.67\left(0.67^{\S}\right)$	-	$0.58\left(0.58^{\S}\right)$
$\chi_{\text {red }}^{2}$	$1.34\left(1.33^{\S}\right)$	$16.3\left(13.0^{\S}\right)$	$7.0\left(6.3^{\S}\right)$

[^2]Table S5: Structural parameters obtained by SDP-analysis at $20^{\circ} \mathrm{C}$ for isotopic aLUVs. SANS data were previously published in [2] and are reanalyzed here.

	SAXS*	Joint Analysis SANS †	Joint Analysis SANS\&SAXS ‡
$\mathrm{V}_{\text {lipid }}{ }^{\S}\left[\AA^{3}\right]$	1247	1247	1247
$\mathrm{V}_{\text {head }}{ }^{\S}\left[\AA^{3}\right]$	331	331	331
$\mathrm{V}_{P C}{ }^{\S}\left[\AA^{3}\right]$	191.98	191.98	191.98
$\mathrm{V}_{C G}{ }^{\S}\left[\AA^{3}\right]$	139.02	139.02	139.02
$\mathrm{V}_{M N}{ }^{\S}\left[\AA^{3}\right]$	811.37	811.37	811.37
$\mathrm{V}_{M} \S\left[\AA^{3}\right]$	104.63	104.63	104.63
$\mathrm{A}_{\text {out }}\left[\AA^{2}\right]$	64.5	66.9	65.7
$\mathrm{A}_{\text {in }}\left[\AA^{2}\right]$	63.2	63.5	63.4
$\sigma_{P C i n}$	2.655	2.59	2.70
$\sigma_{\text {PCout }}$	2.5413	2.68	2.57
$\sigma_{C G i n}$	2.53	2.56	2.52
$\sigma_{C G o u t}$	2.51	2.56	2.44
$\sigma_{M}{ }^{\S}$	2.02	2.02	2.02
$\sigma_{M N}$	5.14	5.08	5.04
$\left\|z_{P C i n}\right\|$	18.77	20.09	19.10
$\left\|z_{\text {PCout }}\right\|$	19.58	19.14	19.87
$\left\|z_{C G i n}\right\|$	15.49	15.43	15.44
$\left\|z_{\text {CGout }}\right\|$	15.20	14.69	14.94
$\left\|z_{M}\right\|^{\S}$	1.00	1.00	1.00
$\left\|z_{M N i n}\right\|$	14.49	14.43	14.44
$\left\|z_{M N o u t}\right\|$	14.20	13.69	13.94
$\chi_{\text {red }}^{2}$	4.5	8.7	6.6

[^3]

Figure S1: Residuals of isotopic aLUVs obtained by either applying the slab model without constraints (blue line), constraining the fit to $n_{W}^{i n}<n_{W}^{\text {out }}$ and $A_{L}^{\text {in }}<A_{L}^{\text {out }}$ (red dashed line) or applying the SDP-model (green short-dashed line) for POPC-d $44^{d o n} / \mathrm{POPC}^{a c c}$ (top panel), POPC ${ }^{\text {don }} /$ POPC-d $44_{a c c}$ (middle panel) and for SAXS experiments (lower panel). It can be seen that the difference in residuals of the constrained and unconstrained fits cannot be distinguished. SANS data were previously published in [2] and are reanalyzed here.

Table S6: Leaflet composition of chemical aLUVs determined by UPLC-MS and ${ }^{1} \mathrm{H}$ NMR. $\chi_{i}^{\text {out }}\left(\chi_{i}^{i n}\right)$ indicates the mole fraction of all components in outer and inner leaflet.

	Component	χ_{i}	$\chi^{\text {out }}$	$\chi_{i}^{\text {in }}$	$\chi_{i}^{\text {out }}$
	POPC-d13 (acceptor)	0.72^{*}	0.53^{\ddagger}	$0.92\left(0.43^{\S}\right)$	$0.57\left(0.29^{\S}\right)$
	DPPC-d64 (donor)	0.28^{*}		$0.08(0.04)$	$0.43(0.24)$
	Total	1.00		1.00	1.00
SANS	POPC-d13 (acceptor)	0.74^{*}	0.53^{\ddagger}	$0.85\left(0.40^{\S}\right)$	$0.65\left(0.34^{\S}\right)$
	DPPC (donor)	0.26^{*}		$0.15\left(0.07^{\S}\right)$	$0.35\left(0.19^{\S}\right)$
	Total	1.00		1.00	1.00
SAXS	POPC-d13 (acceptor)	0.73^{*}	0.53^{\ddagger}	$0.91\left(0.43^{\S}\right)$	$0.57\left(0.30^{\S}\right)$
	DPPC (donor)	0.27^{*}		$0.09\left(0.04^{\S}\right)$	$0.43\left(0.23^{\S}\right)$
	Total	1.00		1.00	1.00

* from UPLC
\ddagger calculated for 100 nm vesicles assuming $50 \AA$ bilayer thickness
§ total bilayer mole fraction

Table S7: Structural parameters of chemical DPPC/POPC aLUVs obtained by the slab model at $50^{\circ} \mathrm{C}$.

	SAXS*		Joint Analysis $_{\text {SANS }}{ }^{\dagger}$		Joint Analysis $_{\text {SANS\&SAXS }}{ }^{\ddagger}$	
	DPPC	POPC	DPPC	POPC	DPPC	POPC
$\mathrm{V}_{\text {lipid }}{ }^{\S}\left[\AA^{3}\right]$	1228.5	1275.5	1228.5	1275.5	1228.5	1275.5
$\mathrm{~V}_{\text {head }}{ }^{\S}\left[\AA^{3}\right]$	331	331	331	331	331	331
$\mathrm{~A}_{L}\left[\AA^{2}\right]$	64.9	69.7	61.7	65.7	61.7	68.7
n_{W}	6.6	6.6	7.2		7.2	4.7
$\mathrm{p}_{C G} \S$	1.00			-		
p_{M}	0.54		-		1.00	4.3
$\chi_{\text {red }}^{2}$	31.1		323.5			0.49

[^4]Table S8: Structural parameter of scrambled DPPC/POPC LUVs determined by the slab model at $50^{\circ} \mathrm{C}$.

	SAXS *		Joint Analysis $S_{S A N S}{ }^{\dagger}$		Joint Analysis $S_{S A N S \& S A X S}{ }^{\ddagger}$		
	DPPC	POPC	DPPC	POPC	DPPC	POPC	
$\mathrm{V}_{\text {lipid }}{ }^{\S}\left[\AA^{3}\right]$	1228.5	1275.5	1228.5	1275.5	1228.5	1275.5	
$\mathrm{~V}_{\text {head }}{ }^{8}\left[\AA^{3}\right]$	331	331	331	331	331	331	
$\mathrm{~A}_{L}\left[\AA^{2}\right]$	63.4	68.4	64.9	66.5	64.9		
n_{W}	5.3	4.9	3.2	3.2	5.0		57.8
$\mathrm{p}_{C G}{ }^{\S}$	1.00			-			1.00
p_{M}	0.51		-				
$\chi_{\text {red }}^{2}$	13.0		241.1			0.51	

[^5]Table S9: Structural parameters of chemical aLUVs determined by the SDP model at $50^{\circ} \mathrm{C}$.

	SAXS*		Joint Analysis $_{S A N S}{ }^{\dagger}$		Joint Analysis $_{\text {SANS\&SAXS }}{ }^{\ddagger}$	
	DPPC	POPC	DPPC	POPC	DPPC	POPC
$\mathrm{V}_{\text {lipid }}{ }^{\S}\left[\AA^{3}\right]$	1228.5	1275.5	1228.5	1275.5	1228.5	1275.5
$\mathrm{V}_{\text {head }}{ }^{\S}\left[\AA^{3}\right]$	331	331	331	331	331	331
$\mathrm{V}_{P C}{ }^{\S}\left[\AA^{3}\right]$	191.98	191.98	191.98	191.98	191.98	191.98
$\mathrm{V}_{C G}{ }^{\S}\left[\AA^{3}\right]$	139.02	139.02	139.02	139.02	139.02	139.02
$\mathrm{V}_{M N}{ }^{\S}\left[\AA^{3}\right]$	787.77	835.54	787.77	835.54	787.77	835.54
$\mathrm{V}_{M}{ }^{\S}\left[\AA^{3}\right]$	109.73	108.54	109.73	108.54	109.73	108.54
$\mathrm{A}_{L}\left[\AA^{2}\right]$	62.2	64.9	62.2	66.6	62.6	67.9
$\sigma_{P C}$	2.37	4.37	2.37	2.65	2.34	2.61
$\sigma_{C G}$	2.18	2.38	2.21	2.50	2.09	2.55
$\sigma_{M}{ }^{\S}$	2.38	2.02	2.38	2.02	2.38	2.02
$\sigma_{M N}$	5.68	5.20	5.54	5.13	5.43	5.13
$\left\|z_{P C}\right\|$	19.18	16.64	19.97	19.41	19.71	17.12
$\left\|z_{C G}\right\|$	15.42	15.56	15.42	15.16	15.33	14.91
$\left\|z_{M}\right\|^{\S}$	1.00	1.00	1.00	1.00	1.00	1.00
$\left\|z_{M N}\right\|$	14.42	14.56	14.42	14.16	14.33	13.91
$\chi_{\text {red }}^{2}$	4.2		303.1		141.3	

[^6]Table S10: Structural parameters of scrambled DPPC/POPC LUVs determined by the SDP model at $50^{\circ} \mathrm{C}$.

	SAXS*		Joint Analysis $_{S A N S}{ }^{\dagger}$	Joint Analysis		
	DPPC	POPC	DPPC	POPC	DPPC	POPC

[^7]Table S11: Structural parameter of chemical aLUVs and scrambled LUVs for the outer/inner leaflet determined from values obtained in table S7,S8,S9, S10.

Model	Components	$\mathrm{d}_{C o}[\AA]$	$\mathrm{d}_{C i}[\AA]$	$\mathrm{d}_{B}[\AA]$	$\begin{aligned} & \mathrm{A}_{L}^{\text {out }} \\ & {\left[\AA^{2}\right]} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{L}^{i n} \\ & {\left[\AA^{2}\right]} \end{aligned}$
AsymSlab $_{\text {Joint }}$	SANS ${ }_{1}{ }^{*}$	14.11	13.81	37.74	66.5	68.1
	$\mathrm{SANS}_{2}{ }^{\dagger}$	14.03	13.87	37.79	66.2	67.6
	$\mathrm{SAXS}_{1}{ }^{\ddagger}$	14.09	13.82	37.82	65.6	68.1
AsymSDP $_{\text {Joint }}$	$\mathrm{SANS}_{1}{ }^{*}$	14.09	14.01	38.09	65.5	67.1
	$\mathrm{SANS}_{2}{ }^{\dagger}$	14.05	13.97	37.96	66.0	67.1
	$\mathrm{SAXS}_{1}{ }^{\ddagger}$	14.09	13.94	37.98	65.6	67.4
ScramSlab ${ }_{\text {Joint }}$	$\mathrm{SANS}_{1}{ }^{*}$	13.90	13.90	37.68	67.0	67.0
	$\mathrm{SANS}_{2}{ }^{\dagger}$	13.90	13.90	37.68	67.1	67.1
	$\mathrm{SAXS}_{1}{ }^{\ddagger}$	13.90	13.90	37.68	67.1	67.1
ScramSDP $_{\text {Joint }}$	$\mathrm{SANS}_{1}{ }^{*}$	13.91	13.91	37.26	67.8	67.8
	$\mathrm{SANS}_{2}{ }^{\dagger}$	13.91	13.91	37.22	67.9	67.9
	$\mathrm{SAXS}_{1}{ }^{\ddagger}$	13.90	13.90	37.25	67.8	67.8

[^8]

Figure S2: Slab analysis (blue lines) of DPPC ${ }^{d o n} /$ POPC $^{a c c}$ aLUVs (open circles) and scrambled LUVs (filled triangles). Panels on the right show the corresponding SLDs (blue: aLUVs; dashed: scrambled LUVs). The different contrast samples for SANS experiments were DPPC$\mathrm{d} 62^{\text {don }} / \mathrm{POPC}-\mathrm{d} 13^{a c c}\left(\mathrm{a}_{\text {asym }} / \mathrm{a}_{\text {scram }}\right)$ and DPPC ${ }^{\text {don }} /$ POPC-d13 ${ }^{\text {acc }}\left(\mathrm{b}_{\text {asym }} / \mathrm{b}_{\text {scram }}\right)$. Data were offset vertically for clarity.

Figure S3: SDP analysis of POPC-LUVs measured at $20^{\circ} \mathrm{C}$, showing the volume probability distribution of the joint ananylsis of SANS and SAXS data.

Figure S4: SDP analysis of POPC-aLUVs measured at $20^{\circ} \mathrm{C}$, showing the volume probability distribution of the joint ananylsis of SANS and SAXS data.

Figure S5: SDP analysis of chemical-aLUVs measured at $50^{\circ} \mathrm{C}$, showing the volume probability distribution of the joint analysis of the structure of DPPC/POPC for different conrasts (upper two panels for SANS measurements, lower panels ${ }_{1}$ SAXS) which show a slightly different exchange efficiency.

Figure S6: Chemical structures of deuterated phospholipids. Lipids are displayed in space fill representation: white indicating hydrogen and yellow deuterium.

References

[1] Jürgen Hartler, Martin Trötzmüller, Chandramohan Chitraju, Friedrich Spener, Harald C Köfeler, and Gerhard G Thallinger. Lipid data analyzer: unattended identification and quantitation of lipids in lc-ms data. Bioinformatics, 27(4):572-577, 2011.
[2] Frederick A Heberle, Drew Marquardt, Milka Doktorova, Barbara Geier, Robert F Standaert, Peter Heftberger, Benjamin Kollmitzer, Jonathan D Nickels, Robert A Dick, Gerald W Feigenson, et al. Sub-nanometer structure of an asymmetric model membrane: Interleaflet coupling influences domain properties. Langmuir, 32(20):5195-5200, 2016.
[3] Oskar L Knittelfelder, Bernd P Weberhofer, Thomas O Eichmann, Sepp D Kohlwein, and Gerald N Rechberger. A versatile ultra-high performance lc-ms method for lipid profiling. Journal of Chromatography B, 951:119-128, 2014.
[4] Drew Marquardt, Barbara Geier, and Georg Pabst. Asymmetric lipid membranes: Towards more realistic model systems. Membranes, 5(2):180-196, 2015.
[5] B. Perly, I. C. P. Smith, L. Hughes, G. W. Burton, and K. U. Ingold. Estimation of the location of natural α-tocopherol in lipid bilayers by $13 \mathrm{c}-\mathrm{nmr}$ spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes, 819(1):131-135, 9/25 1985.

[^0]: * Analysis of SAXS data only.
 \dagger Analysis of different contrasts of SANS data only.
 \ddagger Joint Analysis of SANS and SAXS data.
 § $\mathrm{p}_{C G}$ was set as a fit parameter.

[^1]: * Analysis of SAXS data only.
 ${ }^{\dagger}$ Analysis of different contrasts of SANS data only.
 \ddagger Joint analysis of SANS and SAXS data.
 ${ }^{\S}$ fixed parameter

[^2]: * Analysis of SAXS data only (it cannot not be distsinguished between inner and outer leaflet by fit SAXS data only.)
 ${ }^{\dagger}$ Analysis of different contrasts of SANS data only.
 \ddagger Joint analysis of SANS and SAXS data.
 ${ }^{\S}$ Unconstrained $\left(\mathrm{A}_{L}^{\text {in }}\right.$ is allowed to exceed $\mathrm{A}_{L}^{\text {out }}$ as well as $\mathrm{n}_{w_{\text {out }}}$ can be smaller to $\mathrm{n}_{w_{\text {in }}}$).

[^3]: * Analysis of SAXS data only.
 ${ }^{\dagger}$ Analysis of different contrasts of SANS data only.
 \ddagger Joint analysis of SANS and SAXS data.
 ${ }^{\S}$ fixed parameter

[^4]: * Analysis of SAXS data only.
 ${ }^{\dagger}$ Analysis of different contrasts of SANS data only.
 \ddagger Joint analysis of SANS and SAXS data.
 ${ }^{\S}$ fixed parameter

[^5]: * Analysis of SAXS data only.
 ${ }^{\dagger}$ Analysis of different contrasts of SANS data only.
 \ddagger Joint analysis of SANS and SAXS data.
 § fixed parameter

[^6]: * Analysis of SAXS data only.
 ${ }^{\dagger}$ Analysis of different contrasts of SANS data only.
 \ddagger Joint analysis of SANS and SAXS data.
 § fixed parameter

[^7]: * Analysis of SAXS data only.
 ${ }^{\dagger}$ Analysis of different contrasts of SANS data only.
 \ddagger Joint analysis of SANS and SAXS data.
 § fixed parameter

[^8]: * DPPC-d64 ${ }^{\text {don }} / \mathrm{POPC}-\mathrm{d} 13^{\text {acc }}$ (SANS)
 ${ }^{\dagger} \mathrm{DPPC}^{d o n} / \mathrm{POPC}-\mathrm{d} 13^{a c c}$ (SANS)
 $\ddagger \mathrm{DPPC}^{d o n} / \mathrm{POPC}-\mathrm{d} 13^{a c c}(\mathrm{SAXS})$

