

Volume 49 (2016)

Supporting information for article:

FAULTS: a program for refinement of structures with extended defects

Montse Casas-Cabanas, Marine Reynaud, Jokin Rikarte, Pavel Horbach and Juan Rodríguez-Carvajal

SUPPLEMENTARY INFORMATION FAULTS: a program for refinement of structures with extended defects

Montse Casas-Cabanas^{a,*}, Marine Reynaud^a, Jokin Rikarte^a, Pavel Horbach^{b,c} and Juan Rodríguez-Carvajal^{b,*}

^a CIC Energigune, Parque Técnologico de Álava, Albert Einstein 48, 01510 Miñano (Spain)

^b Institut Laue Languevin, 71 avenue des Martyrs, 38000 Grenoble (France)

^c Institute for Metal Physics, National Academy of Science, 36 Vernadsky Blvd., 03680, Kiev (Ukraine)

* Correspondence e-mails: mcasas@cicenergigune.com, jrc@ill.eu

1. $Li_{\varepsilon}Ni_{1.02}O_2$ example

Figure SI 1: a) Illustration of the structural model used as starting model for the FAULTS refinement of the simulated pattern of $Li_{\epsilon}Ni_{1.02}O_2$. b) Comparison between the pattern of the starting model (blue) and the simulated pattern of $Li_{\epsilon}Ni_{1.02}O_2$ (red) to be refined with FAULTS.

2. MnO₂ example

Figure SI 2: Conventional Rietveld refinement of the XRD pattern of the MnO₂ sample starting from the *pyrolusite* structure and using spherical harmonics to model an anisotropic size broadening. Some of the reflections are not or badly indexed, and their intensities and broadening are poorly simulated.

			Cell							
<i>a</i> ′ = 4.4041 Å		<i>b'</i> = 2.8765 Å		С	<i>c</i> ' = 4.4041 Å					
$\underline{\alpha} = 90^{\circ}$		$\beta = 90^{\circ}$			$\gamma = 90^{\circ}$					
Pyrolusite-type layers										
	Atom	x/a	y/b	z/c	Occupancy					
Layer r1	Mn ^{IV+} 101	0	0	0	1.0					
	O ^{II–} 121	0.3046	0	0.3046	1.0					
	O ^{II–} 122	0.6954	0	-0.3046	1.0					
	O ^{II–} 141	0.8046	0	0.1954	1.0					
	O ^{II–} 142	0.1954	0	-0.1954	1.0					
Layer r2	Mn ^{IV+} 201	1/2	1/2	0	1.0					
Ramsdellite-type layers										
	Atom	x/a	y/b	z/c	Occupancy					
Layer R1	Mn ^{IV+} 301	0.0258	3⁄4	0.2805	1.0					
	Mn ^{IV+} 302	0.9742	1⁄4	-0.2805	1.0					
	O ^{II–} 321	0.2162	1⁄4	0.0726	1.0					
	O ^{II–} 322	0.7838	3⁄4	-0.0726	1.0					
	O ^{II–} 341	0.3001	3⁄4	0.5887	1.0					
	O ^{II–} 342	0.6799	1⁄4	-0.5887	1.0					
	O ^{II–} 361	0.8201	1⁄4	0.4641	1.0					
	O ^{II–} 362	0.1799	3⁄4	-0.4641	1.0					
Layer R2	$Mn^{IV+} 401$	0.4742	3⁄4	0.2805	1.0					
	$Mn^{IV+} 402$	0.5258	1⁄4	-0.2805	1.0					
	O ^{II–} 421	0.2838	1⁄4	0.0726	1.0					
	O ^{II–} 422	0.7162	3⁄4	-0.0726	1.0					
		Transi	tion vectors							
	Transition	x/a	y/b	z/c	Туре					
From layer r1	$r1 \rightarrow r1$	-	-	-	forbidden					
	$r1 \rightarrow r2$	0	0	1/2	pyrolusite					
	$r1 \rightarrow R1$	-	-	-	forbidden					
	$r1 \rightarrow R2$	0	1⁄4	0.7805	De Wolff defect					
From layer r2	$r2 \rightarrow r1$	0	0	1/2	pyrolusite					
	$r2 \rightarrow r2$	-	-	-	forbidden					
	$r2 \rightarrow R1$	0	-1/4	0.7805	De Wolff defect					
	$r_2 \rightarrow R_2$	-	-	-	forbidden					
From layer R1	$R1 \rightarrow r1$	-	-	-	forbidden					
KI	$R1 \rightarrow r2$	0	-1⁄4	0.7805	De Wolff defect					
	$R1 \rightarrow R1$	-	-	-	forbidden					
	$R1 \rightarrow R2$	0	0	1.0528	ramsdellite					
From layer R2	R2 → r1	0	1⁄4	0.7805	De Wolff defect					
	$R2 \rightarrow r2$	-	-	-	forbidden					
	$R2 \rightarrow R1$	0	0	1.0528	ramsdellite					
	$R2 \rightarrow R2$	-	-	-	forbidden					

Table SI 1: Structural description of the *pyrolusite* and *ramsdellite* elements used as the starting model for the FAULTS refinement of MnO₂.

Layer stacking probabilities and stacking models

For the sake of comparison, we have employed the same notations and statistical tools as proposed by Chabre and Pannetier (Chabre & Pannetier, 1995) to describe the sequence of the two kinds of layers:

- P_r and P_R are the respective fractions of single (*rutile*-type = *pyrolusite*-type) and double (*ramsdellite*-type) chain slabs in a given sample. Then, we have the following equality:

$$P_r + P_R = 1$$

- $P_{r\cdot r}$ and $P_{R\cdot r}$ are the probabilities of occurrence of a *rutile* (*pyrolusite*) chain following a *rutile* chain r and a *ramsdellite* chain R, respectively. In the same way, $P_{r\cdot R}$ and $P_{R\cdot R}$ are the probabilities of occurrence of a *ramsdellite* chain R following a *rutile* chain r and a *ramsdellite* chain R, respectively. One can write the following equations:

$$P_{r \cdot r} + P_{r \cdot R} = 1$$
 and $P_{R \cdot r} + P_{R \cdot R} = 1$

and one can deduce that:

$$P_{r} = P_{r} \cdot P_{r \cdot r} + P_{R} \cdot P_{R \cdot r} \text{ and } P_{r} = \frac{1 - P_{R \cdot R}}{2 - P_{r \cdot r} - P_{R \cdot R}}$$
$$P_{R} = P_{r} \cdot P_{r \cdot R} + P_{R} \cdot P_{R \cdot R} \text{ and } P_{R} = \frac{1 - P_{r \cdot r}}{2 - P_{r \cdot r} - P_{R \cdot R}}$$

- P_{rR} is the probability of finding a rR or Rr pair at any position in the crystal:

$$P_{rR} = P_{Rr} = P_r \cdot P_{r \cdot R} = P_R \cdot P_{R \cdot r}$$

From the structural model presented in Table SI 1, we simulated the XRD patterns of different models of stacking, which are described below.

1/ Model 1: "Random sequence"

In the first stacking model explored we used a recursive sequence of layers in which the occurrence of a layer does not depend on the previous layer. This model, called "Random sequence" by Chabre and Pannetier (Chabre & Pannetier, 1995), is therefore defined by the following equations:

$$P_{r \cdot r} = P_{R \cdot r} = P_r$$
 and $P_{R \cdot R} = P_{r \cdot R} = P_R$ with $P_r = 1 - P_R$

where Pr and PR are the respective amount of pyrolusite layers and ramsdellite layers in the sample.

The stacking rules for this model can be represented with the following chart:

Figure SI 4 shows the evolution of the simulated XRD patterns when varying the value P_R from 0 to 100%. This figure is very comparable with the results obtained by Charbre and Pannetier (Chabre & Pannetier, 1995) with the program DIFFaX (Treacy et al., 1991a). The patterns obtained for $P_R = 0\%$ and $P_R = 100\%$ correspond to the ideal *pyrolusite* and *ramsdellite* structures, respectively. As the value of P_R increases, we observe a progressive broadening and vanishing of some reflections of the *pyrosulite* (*e.g.*, (101)_r at d ≈ 3.11 Å) while other reflections corresponding to the *ramsdellite* progressively appear and get narrower (*e.g.*, (101)_R at d ≈ 4.06 Å, (103)_R at d ≈ 2.55 Å, (111)_R at d ≈ 2.34 Å, (113)_R at d ≈ 1.90 Å). Note also that in the meantime other reflections do not broaden but only progressively shift their position to go from one structure to the other (*e.g.*, (011)_r \equiv (012)_R at d $\approx 2.41-2.43$ Å, (112)_r \equiv (212)_R at d $\approx 1.63-1.66$ Å, (202)_r \equiv (204)_R at d $\approx 1.56-1.62$ Å).

Figure SI 4: Evolution of the simulated XRD patterns of the intergrowth of *pyrolusite* and *ramsdellite* layers when varying the amount of *ramsdellite* elements P_R from 0 to 100% in the Model 1: "Random sequence".

2/ Model 2 : Segregated sequence

Conversely to the first model, in the second model, the probability of occurrence of a layer depends on the previous one. We defined P_F the probability of the layer of a given structure type (*pyrolusite* or *ramsdellite*) to be followed by a layer of the other structure:

$$P_{r \cdot R} = P_{R \cdot r} = P_F$$
 and thus $P_{r \cdot r} = P_{R \cdot R} = 1 - P_F$

which can be illustrated by the following chart:

The evolution of the XRD patterns obtained when varying the value of P_F from 0 to 100% are showed in Figure SI 5. The very first pattern ($P_F = 0.0$) is the XRD pattern of the *pyrolusite* structure. The following five patterns ($0.01 \le P_F \le 0.3$) correspond to a total or partial segregation between *pyrolusite* and *ramsdellite* domains. As the value of P_F increases, these domains are progressively intermixed, and the structure obtained when $P_F = 100$ % corresponds to the regular alternation of *pyrolusite* and *ramsdellite* layers to produce the ordered sequence r–R–r–R–...

Figure SI 5: Evolution of the simulated XRD patterns of the intergrowth of *pyrolusite* and *ramsdellite* layers when varying the amount of *ramsdellite* elements P_F from 0 to 100% in the Model 2: Segregated sequence.

3/ Model 3: "Ordered sequence #1"

The third model corresponds to one example of the "ordered sequences" described by Chabre and Pannetier (Chabre & Pannetier, 1995), in which the probability of occurrence of a RR pair is negligible ($P_{RR} \approx 0$). Therefore this model follows the stacking rule:

$$P_{R\cdot r} = 1 - P_{R\cdot R} = 99.99\%$$

The value of $P_{r\cdot R}$ was then varied from 0 to 100%, so that to vary the amount of *ramsdellite* motif (P_R) from 0 to 50%. The stacking of this model can therefore be illustrated by the following chart:

The resulting simulated patterns are shown in Figure SI 6. The pattern calculated for $P_{r\cdot R} = 0$ corresponds to the *pyrolusite* structure, while the one obtained when $P_{r\cdot R} = 100$ % is that of the hypothetical structure of the regular sequence r-R-r-R-r-R-.... As the value of $P_{r\cdot R}$ increases, some peaks split and the diverge from their original position (*e.g.*, (101)_r at d \approx 3.11 Å, (011)_r at d \approx 2.41 Å, (002)_r at d \approx 2.20 Å). Moreover, the introduction of *ramsdellite* motifs into the *pyrolusite* lattice goes with the appearance of a tiny reflection at d \approx 4.40 Å ($2\theta_{\lambda=Cu} \approx 20^{\circ}$), which is subject to a kind of Warren fall and whose intensity increases and shape becomes more symmetric until forms the perfectly ordered phase r-R-r-R-r. One can note that this feature was also present in Model 2: Segregated sequence (Figure SI 5), although is less obvious.

Figure SI 6: Evolution of the simulated XRD patterns of the intergrowth of *pyrolusite* and *ramsdellite* layers when varying the probability of having a *ramsdellite* elements after a *pyrolusite* one $P_{r\cdot R}$ from 0 to 100% in the Model 3: Ordered sequence #1.

4/ Model 4: "Ordered sequence #2"

The fourth model is the opposite example of the "ordered sequence" described by Chabre and Pannetier (Chabre & Pannetier, 1995), and is characterized by the negligible probability of occurring a rr pair in the *ramsdellite* framework ($P_{rr} \approx 0$). It is therefore defined by the following equation:

$$P_{r\cdot R} = 1 - P_{r\cdot r} = 99.99\%$$

Similarly to the previous model, the value of $P_{R,r}$ was varied from 0 to 100%, so that to vary the amount of *pyrolusite* motif in the structure (P_r) from 0 to 50%. The stacking of this model can therefore be illustrated by the following chart:

The resulting simulated patterns are shown in Figure SI 7. In this case, the first pattern corresponds to that of the *ramsdellite* structure, and, again, the structure obtained when $P_{R\cdot r} = 100$ % is the regular alternation of the two kinds of chains r-R-r-R-...

Figure SI 7: Evolution of the simulated XRD patterns of the intergrowth of *pyrolusite* and *ramsdellite* layers when varying the probability of having a *pyrolusite* elements after a *ramsdellite* one $P_{R,r}$ from 0 to 100% in the Model 4: Ordered sequence #2.

5/ Intermediate models

In the fifth and sixth models, we fixed the probability of having a *ramsdellite* layer after a *rutile* one $(P_{r\cdot R})$ to 5 and 10 %, respectively, and we followed the evolution of the patterns of while varying the probability of maintaining a *ramsdellite* domain after a *ramsdellite* slab ($0 \le P_{R\cdot R} \le 100\%$):

These models permit to simulate the effect of how extended are the domains of *ramsdellite* (one or several *ramsdellite* layers). The results of these simulations are presented in Figure SI 8 and Figure SI 9, respectively. The diagrams obtained for $P_{R\cdot R} = 0\%$ and $P_{R\cdot R} = 100\%$ are close to the ones of *pyrolusite* and *ramsdellite*, respectively. These figures show that the XRD patterns of the intergrowth of *pyrolusite* and *ramsdellite* do not suffer from much modification when varying $P_{R\cdot R}$ between 0 and 50 %, except that the main reflection (011)_r at d ≈ 2.41 Å is progressively split in two peaks as the $P_{R\cdot R}$ increases. This means that for *pyrolusite* structures containing low content of *ramsdellite* inclusions, it is difficult to decipher if these inclusions are of the form of single layer of *ramsdellite* or larger domains of *ramsdellite* (several layers).

Figure SI 8: Evolution of the simulated XRD patterns of the intergrowth of *pyrolusite* and *ramsdellite* layers when varying the probability of having a *ramsdellite* elements after a *ramsdellite* one $P_{R\cdot R}$ from 0 to 100% in the Model 5, while the probability of having a *ramsdellite* layer after a *rutile* one $(P_{\Gamma\cdot R})$ is fixed to 5%.

Figure SI 9: Evolution of the simulated XRD patterns of the intergrowth of *pyrolusite* and *ramsdellite* layers when varying the probability of having a *ramsdellite* elements after a *ramsdellite* $P_{R\cdot R}$ from 0 to 100% in the Model 6, while the probability of having a *ramsdellite* layer after a *rutile* one $(P_{r\cdot R})$ is fixed to 10%.

Pyrolusite-type stacking										
	r1–r2	–r1								
Mn^{IV+} 101 – O^{II-} 121	1.85(5)	$Mn^{IV+} 201 - O^{II-} 121$	1.93(3)							
Mn^{IV+} 101 – O^{II-} 122	1.85(5)	$Mn^{\rm IV+} 201 - O^{\rm II-} 121$	1.93(3)							
Mn^{IV+} 101 – O^{II-} 141	1.88(3)	$Mn^{IV+} 201 - O^{II-} 122$	1.93(3)							
Mn^{IV+} 101 – O^{II-} 141	1.88(3)	$Mn^{IV+} 201 - O^{II-} 122$	1.93(3)							
Mn^{IV+} 101 – O^{II-} 142	1.88(3)	$Mn^{IV+} 201 - O^{II-} 141$	1.90(5)							
Mn^{IV+} 101 – O^{II-} 142	1.88(3)	$Mn^{IV+} 201 - O^{II-} 142$	1.90(5)							
Ramsdellite-type stacking										
$Mn^{IV+} 301 - O^{II-} 321$	2.14(5)	$Mn^{\rm IV+} 401 - O^{\rm II-} 421$	2.26(5)							
$Mn^{IV+} 301 - O^{II-} 321$	2.14(5)	$Mn^{IV+} 401 - O^{II-} 421$	2.26(5)							
$Mn^{IV+} 301 - O^{II-} 322$	1.82(7)	$Mn^{IV+} 401 - O^{II-} 422$	1.88(7)							
$Mn^{IV_{+}} 301 - O^{II_{-}} 341$	1.97(7)	$Mn^{IV+} 401 - O^{II-} 342$	1.82(4)							
$Mn^{IV_{+}} \ 301 - O^{II_{-}} \ 361$	1.96(5)	$Mn^{IV+} 401 - O^{II-} 342$	1.82(4)							
$Mn^{IV_{+}} 301 - O^{II_{-}} 361$	1.96(5)	$Mn^{IV+} 401 - O^{II-} 362$	1.98(7)							
$Mn^{IV_{+}} 302 - O^{II_{-}} 321$	1.82(7)	$Mn^{\rm IV+}402 - O^{\rm II-}421$	1.88(7)							
$Mn^{IV_{+}}302 - O^{II_{-}}322$	2.14(5)	$Mn^{\rm IV+}402 - O^{\rm II-}422$	2.26(5)							
$Mn^{IV_{+}}302 - O^{II_{-}}322$	2.14(5)	$Mn^{\rm IV+}402 - O^{\rm II-}422$	2.26(5)							
$Mn^{IV_{+}}302 - O^{II_{-}}342$	1.97(7)	$Mn^{IV+} 402 - O^{II-} 341$	1.82(4)							
$Mn^{IV_{+}}302 - O^{II_{-}}362$	1.96(5)	$Mn^{IV+} 402 - O^{II-} 341$	1.82(4)							
$Mn^{IV_{+}}302 - O^{II_{-}}362$	1.96(5)	$Mn^{IV+} 402 - O^{II-} 361$	1.98(7)							
	De Wolff defe	ects stacking								
r1–R2–r1		r2–R1–r2								
$Mn^{IV_{+}} \ 101 - O^{II_{-}} \ 121$	1.85(5)	$Mn^{IV+} 201 - O^{II-} 341$	1.84(3)							
$Mn^{IV_{+}} \ 101 - O^{II_{-}} \ 122$	1.85(5)	$Mn^{IV+} 201 - O^{II-} 341$	1.84(3)							
$Mn^{IV_{+}} 101 - O^{II_{-}} 141$	1.88(3)	$Mn^{IV+} 201 - O^{II-} 361$	1.98(5)							
$Mn^{IV_{+}} 101 - O^{II_{-}} 141$	1.88(3)	$Mn^{IV+} 201 - O^{II-} 342$	1.84(3)							
$Mn^{IV+} 101 - O^{II-} 142$	1.88(3)	$Mn^{IV+} 201 - O^{II-} 342$	1.84(3)							
$Mn^{IV_{+}} 101 - O^{II_{-}} 142$	1.88(3)	$Mn^{IV+} 201 - O^{II-} 362$	1.98(5)							
$Mn^{IV_{+}}401 - O^{II_{-}}421$	2.26(5)	$Mn^{IV+} 301 - O^{II-} 321$	2.14(5)							
$Mn^{IV_{+}}401 - O^{II_{-}}421$	2.26(5)	$Mn^{IV+} 301 - O^{II-} 321$	2.14(5)							
$Mn^{IV_{+}}401 - O^{II_{-}}422$	1.88(7)	$Mn^{IV+} 301 - O^{II-} 322$	1.82(7)							
$Mn^{IV_{+}}401 - O^{II_{-}}122$	1.90(5)	$Mn^{IV+} 301 - O^{II-} 341$	1.97(7)							
$Mn^{IV_{+}} 401 - O^{II_{-}} 122$	1.90(5)	$Mn^{IV+} 301 - O^{II-} 361$	1.96(5)							
$Mn^{IV_{+}}401 - O^{II_{-}}142$	1.93(7)	$Mn^{IV+} 301 - O^{II-} 361$	1.96(5)							
$Mn^{IV+}402 - O^{II-}421$	1.88(7)	$Mn^{\rm IV+}302 - O^{\rm II-}321$	1.82(7)							
$Mn^{IV+} \ 402 - O^{II-} \ 422$	2.26(5)	$Mn^{\rm IV+}302 - O^{\rm II-}322$	2.14(5)							
$Mn^{IV+} \ 402 - O^{II-} \ 422$	2.26(5)	$Mn^{\rm IV+}302 - O^{\rm II-}322$	2.14(5)							
$Mn^{IV+} 402 - O^{II-} 121$	1.90(5)	$Mn^{\rm IV+}302 - O^{\rm II-}342$	1.97(7)							
$Mn^{IV+} \ 402 - O^{II-} \ 121$	1.90(5)	$Mn^{\rm IV+}302 - O^{\rm II-}362$	1.96(5)							
$Mn^{IV_{+}}402 - O^{II_{-}}141$	1.93(7)	$Mn^{IV+} 302 - O^{II-} 362$	1.96(5)							

Table SI 2: Selected distances of the refined model for the MnO₂ sample

Figure SI 10: Results of the FAULTS refinement of the MnO₂ sample when refining the layer width instead of the isotropic broadening parameters Dl and Dg. Remark that the reflection $(002)_r$ at $d \approx 2.24$ Å $(2\theta_{Cu} \approx 40.0^\circ)$ is not well modelled.

Figure SI 11: Evolution of the XRD pattern of the *pyrolusite* with the presence of twinning (twin plane (011), from ideal *pyrolusite* ($P_t = 0.0$) to fully twinned *pyrolusite* ($P_t = 1.0$).

To simulate the effect of twinning in the *pyrolusite* lattice along (011), new layers were defined so that to have the staking direction perpendicular to the twinning place. The structural model used in FAULTS is described in Table SI 3 and an illustration of a possible twinning is shown in Figure SI 12.

Cell										
<i>a''</i> = 4.4041 Å		<i>b''</i> = 5.2603 Å			<i>c''</i> = 4.81664 Å					
$\alpha = 90^{\circ}$		$\beta = 90^{\circ}$			$\gamma = 90^{\circ}$					
Layers										
	Atom	x/a	y/b	z/c	Occu	pancy				
Layer T1 = T3	Mn ^{IV+} 11	0	0	0	1.0					
-	Mn^{IV+} 12	1/2	1/2	0	1.0					
	O ^{II-} 111	1/4	1/4	1/6	1.0					
	O ^{II-} 112	1/4	1/2	-1/3	1.0					
	O ^{II-} 121	3⁄4	1/2	1/3	1.0					
	O ^{II-} 122	3⁄4	3⁄4	-1/6	1.0					
	O ^{II-} 131	3⁄4	1/4	-1/6	1.0					
	O ^{II-} 132	3⁄4	0	1/3	1.0					
	O ^{II–} 141	1⁄4	0	-1/3	1.0					
	O ^{II-} 142	1⁄4	3⁄4	1/6	1.0					
Layer T2 = T4	$Mn^{IV+} 21$	0	0	0	1.0					
	Mn ^{IV+} 22	1/2	1/2	0	1.0					
		Tı	ansition vectors	5						
	Transition	x/a	y/b	z/c	Probability	Туре				
From layer T1	$T1 \rightarrow T1$	-	-	-	0	forbidden				
	$T1 \rightarrow T2$	0	-0.299	1/2	$1-P_t$	no twinning				
	$T1 \rightarrow T3$	-	-	-	0	forbidden				
	$T1 \rightarrow T4$	0	0.299	1/2	\mathbf{P}_{t}	twinning				
From layeT T2	$T2 \rightarrow T1$	0	-0.299	1/2	1-P _t	no twinning				
	$T2 \rightarrow T2$	-	-	-	0	forbidden				
	$T2 \rightarrow T3$	0	0.201	1/2	\mathbf{P}_{t}	twinning				
	$T2 \rightarrow T4$	-	-	-	0	forbidden				
From layeT T3	$T3 \rightarrow T1$	-	-	-	0	forbidden				
	$T3 \rightarrow T2$	0	-0.299	1/2	\mathbf{P}_{t}	twinning				
	$T3 \rightarrow T3$	-	-	-	0	forbidden				
	$T3 \rightarrow T4$	0	0.299	1/2	$1-P_t$	no twinning				
From layeT T4	$T4 \rightarrow T1$	0	-0.201	1⁄2	Pt	twinning				
	$T4 \rightarrow T2$	-	-	-	0	forbidden				
	$T4 \rightarrow T3$	0	0.299	1/2	$1-P_t$	no twinning				
	$T4 \rightarrow T4$	-	-	-	0	forbidden				

Table SI 3: Structural model used to described twinned *pyrolusite* (twin plane (011).

