

Volume 49 (2016)
Supporting information for article:

FAULTS: a program for refinement of structures with extended defects

Montse Casas-Cabanas, Marine Reynaud, Jokin Rikarte, Pavel Horbach and Juan Rodríguez-Carvajal

SUPPLEMENTARY INFORMATION
 FAULTS: a program for refinement of structures with extended defects

Montse Casas-Cabanas ${ }^{\text {a,* }}$, Marine Reynaud ${ }^{\text {a }}$, Jokin Rikarte ${ }^{\text {a }}$, Pavel Horbach ${ }^{\mathrm{b}, \mathrm{c}}$ and Juan RodríguezCarvajal ${ }^{\text {b,* }}$
${ }^{\text {a }}$ CIC Energigune, Parque Técnologico de Álava, Albert Einstein 48, 01510 Miñano (Spain)
b Institut Laue Languevin, 71 avenue des Martyrs, 38000 Grenoble (France)
${ }^{\text {c }}$ Institute for Metal Physics, National Academy of Science, 36 Vernadsky Blvd., 03680, Kiev (Ukraine)

* Correspondence e-mails: mcasas@cicenergigune.com, jrc@ill.eu

1. $\mathrm{Li}_{\varepsilon} \mathrm{Ni}_{1.02} \mathrm{O}_{2}$ example

Figure SI 1: a) Illustration of the structural model used as starting model for the FAULTS refinement of the simulated pattern of $\mathrm{Li}_{\varepsilon} \mathrm{Ni}_{1.02} \mathrm{O}_{2}$. b) Comparison between the pattern of the starting model (blue) and the simulated pattern of $\mathrm{Li}_{\varepsilon} \mathrm{Ni}_{1.02} \mathrm{O}_{2}$ (red) to be refined with FAULTS.

2. MnO_{2} example

Figure SI 2: Conventional Rietveld refinement of the XRD pattern of the MnO_{2} sample starting from the pyrolusite structure and using spherical harmonics to model an anisotropic size broadening. Some of the reflections are not or badly indexed, and their intensities and broadening are poorly simulated.

Table SI 1: Structural description of the pyrolusite and ramsdellite elements used as the starting model for the FAULTS refinement of MnO_{2}.

Cell					
$a^{\prime}=4.4041 \AA$		$b^{\prime}=2.8765 \AA$		$c^{\prime}=4.4041$ A	
$\alpha=90^{\circ}$		$\beta=90^{\circ}$		$\gamma=90^{\circ}$	
Pyrolusite-type layers					
	Atom	x/a	y/b	z/c	Occupancy
Layer r1	$\mathrm{Mn}^{\mathrm{IV+}} 101$	0	0	0	1.0
	$\mathrm{O}^{\text {II- }} 121$	0.3046	0	0.3046	1.0
	$\mathrm{O}^{\text {II- }} 122$	0.6954	0	-0.3046	1.0
	$\mathrm{O}^{\text {II- }} 141$	0.8046	0	0.1954	1.0
	$\mathrm{O}^{\text {II- }} 142$	0.1954	0	-0.1954	1.0
Layer r2	$\mathrm{Mn}^{\mathrm{IV}+} 201$	1/2	1/2	0	1.0
Ramsdellite-type layers					
	Atom	x/a	y / b	z/c	Occupancy
Layer R1	$\mathrm{Mn}^{\mathrm{IV}+} 301$	0.0258	$3 / 4$	0.2805	1.0
	$\mathrm{Mn}^{\mathrm{IV}+} 302$	0.9742	$1 / 4$	-0.2805	1.0
	$\mathrm{O}^{\text {II- }} 321$	0.2162	$1 / 4$	0.0726	1.0
	$\mathrm{O}^{\text {II- }} 322$	0.7838	$3 / 4$	-0.0726	1.0
	$\mathrm{O}^{\text {II- }} 341$	0.3001	$3 / 4$	0.5887	1.0
	$\mathrm{O}^{\text {II- }} 342$	0.6799	$1 / 4$	-0.5887	1.0
	$\mathrm{O}^{\text {II- }} 361$	0.8201	$1 / 4$	0.4641	1.0
	$\mathrm{O}^{\text {II- }} 362$	0.1799	$3 / 4$	-0.4641	1.0
Layer R2	$\mathrm{Mn}^{\text {IV+ }} 401$	0.4742	$3 / 4$	0.2805	1.0
	$\mathrm{Mn}^{\mathrm{IV}+} 402$	0.5258	$1 / 4$	-0.2805	1.0
	$\mathrm{O}^{\text {II- }} 421$	0.2838	$1 / 4$	0.0726	1.0
	$\mathrm{O}^{\text {II- }} 422$	0.7162	$3 / 4$	-0.0726	1.0
Transition vectors					
	Transition	x/a	y / b	z/c	Type
From layer r1	$\mathrm{r} 1 \rightarrow \mathrm{r} 1$	-	-	-	forbidden
	$\mathrm{r} 1 \rightarrow \mathrm{r} 2$	0	0	1/2	pyrolusite
	$\mathrm{r} 1 \rightarrow \mathrm{R} 1$	-	-	-	forbidden
	$\mathrm{r} 1 \rightarrow \mathrm{R} 2$	0	$1 / 4$	0.7805	De Wolff defect
From layer r2	$\mathrm{r} 2 \rightarrow \mathrm{r} 1$	0	0	1/2	pyrolusite
	r2 \rightarrow r2	-	-	-	forbidden
	$\mathrm{r} 2 \rightarrow \mathrm{R} 1$	0	-1/4	0.7805	De Wolff defect
	$\mathrm{r} 2 \rightarrow \mathrm{R} 2$	-	-	-	forbidden
From layer R1	R1 \rightarrow r1	-	-	-	forbidden
	$\mathrm{R} 1 \rightarrow \mathrm{r} 2$	0	-1/4	0.7805	De Wolff defect
	$\mathrm{R} 1 \rightarrow \mathrm{R} 1$	-	-	-	forbidden
	$\mathrm{R} 1 \rightarrow \mathrm{R} 2$	0	0	1.0528	ramsdellite
From layer R2	R2 \rightarrow r1	0	$1 / 4$	0.7805	De Wolff defect
	R2 \rightarrow r2	-	-	-	forbidden
	$\mathrm{R} 2 \rightarrow \mathrm{R} 1$	0	0	1.0528	ramsdellite
	$\mathrm{R} 2 \rightarrow \mathrm{R} 2$	-	-	-	forbidden

Figure SI 3: Layer description used in the FAULTS refinement of $\mathbf{M n O}_{2}$.

De Wolff defects

Layer stacking probabilities and stacking models

For the sake of comparison, we have employed the same notations and statistical tools as proposed by Chabre and Pannetier (Chabre \& Pannetier, 1995) to describe the sequence of the two kinds of layers:

- P_{r} and P_{R} are the respective fractions of single (rutile-type = pyrolusite-type) and double (ramsdellite-type) chain slabs in a given sample. Then, we have the following equality:

$$
P_{r}+P_{R}=1
$$

- $\quad \mathrm{P}_{\mathrm{r} \cdot \mathrm{r}}$ and $\mathrm{P}_{\mathrm{R} \cdot \mathrm{r}}$ are the probabilities of occurrence of a rutile (pyrolusite) chain following a rutile chain r and a ramsdellite chain R, respectively. In the same way, $P_{r \cdot R}$ and $P_{R \cdot R}$ are the probabilities of occurrence of a ramsdellite chain R following a rutile chain r and a ramsdellite chain R , respectively. One can write the following equations:

$$
\mathrm{P}_{\mathrm{r} \cdot \mathrm{r}}+\mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}=1 \text { and } \mathrm{P}_{\mathrm{R} \cdot \mathrm{r}}+\mathrm{P}_{\mathrm{R} \cdot \mathrm{R}}=1
$$

and one can deduce that:

$$
\begin{aligned}
& P_{r}=P_{r} \cdot P_{r \cdot r}+P_{R} \cdot P_{R \cdot r} \quad \text { and } \quad P_{r}=\frac{1-P_{R \cdot R}}{2-P_{r \cdot r}-P_{R \cdot R}} \\
& P_{R}=P_{r} \cdot P_{r \cdot R}+P_{R} \cdot P_{R \cdot R} \quad \text { and } \quad P_{R}=\frac{1-P_{r \cdot r}}{2-P_{r \cdot r}-P_{R \cdot R}}
\end{aligned}
$$

- $P_{r R}$ is the probability of finding a $r R$ or $R r$ pair at any position in the crystal:

$$
\mathrm{P}_{\mathrm{rR}}=\mathrm{P}_{\mathrm{Rr}}=\mathrm{P}_{\mathrm{r}} \cdot \mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}=\mathrm{P}_{\mathrm{R}} \cdot \mathrm{P}_{\mathrm{R} \cdot \mathrm{r}}
$$

From the structural model presented in Table SI 1, we simulated the XRD patterns of different models of stacking, which are described below.

1/ Model 1: "Random sequence"

In the first stacking model explored we used a recursive sequence of layers in which the occurrence of a layer does not depend on the previous layer. This model, called "Random sequence" by Chabre and Pannetier (Chabre \& Pannetier, 1995), is therefore defined by the following equations:

$$
P_{r \cdot r}=P_{R \cdot r}=P_{r} \text { and } P_{R \cdot R}=P_{r \cdot R}=P_{R} \text { with } P_{r}=1-P_{R}
$$

where P_{r} and P_{R} are the respective amount of pyrolusite layers and ramsdellite layers in the sample.

The stacking rules for this model can be represented with the following chart:

Figure SI 4 shows the evolution of the simulated XRD patterns when varying the value P_{R} from 0 to 100%. This figure is very comparable with the results obtained by Charbre and Pannetier (Chabre \& Pannetier, 1995) with the program DIFFaX (Treacy et al., 1991a). The patterns obtained for $\mathrm{P}_{\mathrm{R}}=0 \%$ and $\mathrm{P}_{\mathrm{R}}=100 \%$ correspond to the ideal pyrolusite and ramsdellite structures, respectively. As the value of P_{R} increases, we observe a progressive broadening and vanishing of some reflections of the pyrosulite (e.g., $(101)_{\mathrm{r}}$ at $\mathrm{d} \approx 3.11 \AA$) while other reflections corresponding to the ramsdellite progressively appear and get narrower $\left(\right.$ e.g., $(101)_{\mathrm{R}}$ at $\mathrm{d} \approx 4.06 \AA,(103)_{\mathrm{R}}$ at $\mathrm{d} \approx 2.55 \AA,(111)_{\mathrm{R}}$ at $\mathrm{d} \approx 2.34 \AA,(113)_{\mathrm{R}}$ at $\left.\mathrm{d} \approx 1.90 \AA\right)$. Note also that in the meantime other reflections do not broaden but only progressively shift their position to go from one structure to the other (e.g., $(011)_{\mathrm{r}} \equiv(012)_{\mathrm{R}}$ at $\mathrm{d} \approx 2.41-2.43 \AA,(112)_{\mathrm{r}} \equiv(212)_{\mathrm{R}}$ at $\mathrm{d} \approx 1.63-$ $1.66 \AA,(202)_{\mathrm{r}} \equiv(204)_{\mathrm{R}}$ at $\left.\mathrm{d} \approx 1.56-1.62 \AA\right)$.

Figure SI 4: Evolution of the simulated XRD patterns of the intergrowth of pyrolusite and ramsdellite layers when varying the amount of ramsdellite elements P_{R} from 0 to $\mathbf{1 0 0 \%}$ in the Model 1: "Random sequence".

2/ Model 2 : Segregated sequence

Conversely to the first model, in the second model, the probability of occurrence of a layer depends on the previous one. We defined P_{F} the probability of the layer of a given structure type (pyrolusite or ramsdellite) to be followed by a layer of the other structure:

$$
\mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}=\mathrm{P}_{\mathrm{R} \cdot \mathrm{r}}=\mathrm{P}_{\mathrm{F}} \text { and thus } \mathrm{P}_{\mathrm{r} \cdot \mathrm{r}}=\mathrm{P}_{\mathrm{R} \cdot \mathrm{R}}=1-\mathrm{P}_{\mathrm{F}}
$$

which can be illustrated by the following chart:

The evolution of the XRD patterns obtained when varying the value of P_{F} from 0 to 100% are showed in Figure SI 5. The very first pattern ($\mathrm{P}_{\mathrm{F}}=0.0$) is the XRD pattern of the pyrolusite structure. The following five patterns $\left(0.01 \leq \mathrm{P}_{\mathrm{F}} \leq 0.3\right)$ correspond to a total or partial segregation between pyrolusite and ramsdellite domains. As the value of P_{F} increases, these domains are progressively intermixed, and the structure obtained when $\mathrm{P}_{\mathrm{F}}=100 \%$ corresponds to the regular alternation of pyrolusite and ramsdellite layers to produce the ordered sequence $\mathrm{r}-\mathrm{R}-\mathrm{r}-\mathrm{R}-\mathrm{r}-\mathrm{R}-\ldots$

Figure SI 5: Evolution of the simulated XRD patterns of the intergrowth of pyrolusite and ramsdellite layers when varying the amount of ramsdellite elements P_{F} from 0 to $\mathbf{1 0 0 \%}$ in the Model 2: Segregated sequence.

3/ Model 3: "Ordered sequence \#1"

The third model corresponds to one example of the "ordered sequences" described by Chabre and Pannetier (Chabre \& Pannetier, 1995), in which the probability of occurrence of a RR pair is negligible ($\mathrm{P}_{\mathrm{RR}} \approx 0$). Therefore this model follows the stacking rule:

$$
P_{R \cdot r}=1-P_{R \cdot R}=99.99 \%
$$

The value of $\mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}$ was then varied from 0 to 100%, so that to vary the amount of ramsdellite motif $\left(\mathrm{P}_{\mathrm{R}}\right)$ from 0 to 50%. The stacking of this model can therefore be illustrated by the following chart:

The resulting simulated patterns are shown in Figure SI 6. The pattern calculated for $\mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}=0$ corresponds to the pyrolusite structure, while the one obtained when $\mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}=100 \%$ is that of the hypothetical structure of the regular sequence $r-R-r-R-r-R-\ldots$. . As the value of $P_{r \cdot R}$ increases, some peaks split and the diverge from their original position (e.g., (101) at $\mathrm{d} \approx 3.11 \AA$, (011$)_{\mathrm{r}}$ at $\mathrm{d} \approx 2.41 \AA$, (002$)_{\mathrm{r}}$ at $\mathrm{d} \approx 2.20 \AA$). Moreover, the introduction of ramsdellite motifs into the pyrolusite lattice goes with the appearance of a tiny reflection at $\mathrm{d} \approx 4.40 \AA\left(2 \theta_{\lambda=\mathrm{Cu}} \approx 20^{\circ}\right)$, which is subject to a kind of Warren fall and whose intensity increases and shape becomes more symmetric until forms the perfectly ordered phase r-R-r-R-r. One can note that this feature was also present in Model 2: Segregated sequence (Figure SI 5), although is less obvious.

Figure SI 6: Evolution of the simulated XRD patterns of the intergrowth of pyrolusite and ramsdellite layers when varying the probability of having a ramsdellite elements after a pyrolusite one $\mathbf{P}_{\mathrm{r} \cdot \mathrm{R}}$ from 0 to $\mathbf{1 0 0 \%}$ in the Model 3: Ordered sequence \#1.

4/ Model 4: "Ordered sequence \#2"

The fourth model is the opposite example of the "ordered sequence" described by Chabre and Pannetier (Chabre \& Pannetier, 1995), and is characterized by the negligible probability of occurring a rr pair in the ramsdellite framework ($\mathrm{P}_{\mathrm{rr}} \approx 0$). It is therefore defined by the following equation:

$$
P_{r \cdot R}=1-P_{r \cdot r}=99.99 \%
$$

Similarly to the previous model, the value of $\mathrm{P}_{\mathrm{R} \cdot \mathrm{r}}$ was varied from 0 to 100%, so that to vary the amount of pyrolusite motif in the structure (P_{r}) from 0 to 50%. The stacking of this model can therefore be illustrated by the following chart:

The resulting simulated patterns are shown in Figure SI 7. In this case, the first pattern corresponds to that of the ramsdellite structure, and, again, the structure obtained when $\mathrm{P}_{\mathrm{R} \cdot \mathrm{r}}=100 \%$ is the regular alternation of the two kinds of chains $\mathrm{r}-\mathrm{R}-\mathrm{r}-\mathrm{R}-\mathrm{r}-\mathrm{R}-\ldots$

Figure SI 7: Evolution of the simulated XRD patterns of the intergrowth of pyrolusite and ramsdellite layers when varying the probability of having a pyrolusite elements after a ramsdellite one $\mathbf{P}_{\mathrm{R} \cdot \mathrm{r}}$ from 0 to $\mathbf{1 0 0 \%}$ in the Model 4: Ordered sequence \#2.

5/ Intermediate models

In the fifth and sixth models, we fixed the probability of having a ramsdellite layer after a rutile one $\left(P_{r} \cdot \mathrm{R}\right)$ to 5 and 10%, respectively, and we followed the evolution of the patterns of while varying the probability of maintaining a ramsdellite domain after a ramsdellite slab ($0 \leq \mathrm{P}_{\mathrm{R} \cdot \mathrm{R}} \leq 100 \%$):

Model 5

Model 6

These models permit to simulate the effect of how extended are the domains of ramsdellite (one or several ramsdellite layers). The results of these simulations are presented in Figure SI 8and Figure SI 9, respectively. The diagrams obtained for $\mathrm{P}_{\mathrm{R} \cdot \mathrm{R}}=0 \%$ and $\mathrm{P}_{\mathrm{R} \cdot \mathrm{R}}=100 \%$ are close to the ones of pyrolusite and ramsdellite, respectively. These figures show that the XRD patterns of the intergrowth of pyrolusite and ramsdellite do not suffer from much modification when varying $\mathrm{P}_{\mathrm{R} \cdot \mathrm{R}}$ between 0 and 50%, except that the main reflection $(011)_{\mathrm{r}}$ at $\mathrm{d} \approx 2.41 \AA$ is progressively split in two peaks as the $\mathrm{P}_{\mathrm{R} \cdot \mathrm{R}}$ increases. This means that for pyrolusite structures containing low content of ramsdellite inclusions, it is difficult to decipher if these inclusions are of the form of single layer of ramsdellite or larger domains of ramsdellite (several layers).

Figure SI 8: Evolution of the simulated XRD patterns of the intergrowth of pyrolusite and ramsdellite layers when varying the probability of having a ramsdellite elements after a ramsdellite one $P_{R \cdot R}$ from 0 to $\mathbf{1 0 0 \%}$ in the Model 5, while the probability of having a ramsdellite layer after a rutile one ($\mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}$) is fixed to 5%.

Figure SI 9: Evolution of the simulated XRD patterns of the intergrowth of pyrolusite and ramsdellite layers when varying the probability of having a ramsdellite elements after a ramsdellite $P_{R \cdot R}$ from 0 to $\mathbf{1 0 0 \%}$ in the Model 6, while the probability of having a ramsdellite layer after a rutile one ($\mathrm{P}_{\mathrm{r} \cdot \mathrm{R}}$) is fixed to 10%.

Table SI 2: Selected distances of the refined model for the MnO_{2} sample

Pyrolusite-type stacking			
r1-r2-r1			
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 121$	1.85(5)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 121$	1.93(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 122$	1.85(5)	$\mathrm{Mn}^{\text {IV }+201-\mathrm{O}^{\text {II- }} 121}$	1.93(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 141$	1.88(3)	$\mathrm{Mn}^{\text {IV }+201-\mathrm{O}^{\text {II- }} 122}$	1.93(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 141$	1.88(3)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 122$	1.93(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 142$	1.88(3)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 141$	1.90(5)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 142$	1.88(3)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 142$	1.90(5)
Ramsdellite-type stacking			
R1-R2-R1			
$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 321$	2.14(5)	$\mathrm{Mn}^{\mathrm{IV}+} 401-\mathrm{O}^{\mathrm{II}-} 421$	2.26(5)
$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 321$	$2.14(5)$		2.26(5)
$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 322$	1.82(7)	$\mathrm{Mn}^{\text {IV+ }+401-\mathrm{O}^{\text {II- }} 422}$	1.88(7)
$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 341$	1.97(7)	$\mathrm{Mn}^{\text {IV+ }+401-\mathrm{O}^{\text {II- }} 342}$	1.82(4)
$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 361$	1.96(5)		1.82(4)
$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 361$	1.96(5)		1.98(7)
$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 321$	1.82(7)		1.88(7)
$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 322$	2.14(5)	$\mathrm{Mn}^{\text {IV }+} 402-\mathrm{O}^{\text {II- }} 422$	2.26(5)
$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 322$	2.14(5)	$\mathrm{Mn}^{\text {IV+ }+402-\mathrm{O}^{\text {II- }} 422}$	2.26(5)
$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 342$	1.97(7)		1.82(4)
$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 362$	1.96(5)	$\mathrm{Mn}^{\text {IV+ }} 402-\mathrm{O}^{\text {II- }} 341$	1.82(4)
$\mathrm{Mn}^{\text {IV }+} 302-\mathrm{O}^{\text {II- }} 362$	1.96(5)	$\mathrm{Mn}^{\text {IV }+} 402-\mathrm{O}^{\text {II- }} 361$	1.98(7)
De Wolff defects stacking			
r1-R2-r1		r2-R1-	
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 121$	1.85(5)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 341$	1.84(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 122$	1.85(5)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 341$	1.84(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 141$	1.88(3)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 361$	1.98(5)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 141$	1.88(3)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 342$	1.84(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 142$	1.88(3)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 342$	1.84(3)
$\mathrm{Mn}^{\text {IV+ }} 101-\mathrm{O}^{\text {II- }} 142$	1.88(3)	$\mathrm{Mn}^{\text {IV+ }} 201-\mathrm{O}^{\text {II- }} 362$	1.98(5)
$\mathrm{Mn}^{\text {IV+ }+401-\mathrm{O}^{\text {II- }} 421}$	2.26(5)	$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 321$	2.14(5)
$\mathrm{Mn}^{\text {IV+ }} 401-\mathrm{O}^{\text {II- }} 421$	2.26(5)	$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 321$	2.14(5)
$\mathrm{Mn}^{\text {IV+ }+401-\mathrm{O}^{\text {II- }} 422}$	1.88(7)	$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 322$	1.82(7)
$\mathrm{Mn}^{\text {IV+ }} 401-\mathrm{O}^{\text {II- }} 122$	1.90(5)	$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 341$	1.97(7)
$\mathrm{Mn}^{\text {IV+ }+401-\mathrm{O}^{\text {II- }} 122}$	1.90(5)	$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 361$	1.96(5)
$\mathrm{Mn}^{\text {IV+ }+401-\mathrm{O}^{\text {II- }} 142}$	1.93(7)	$\mathrm{Mn}^{\text {IV+ }} 301-\mathrm{O}^{\text {II- }} 361$	1.96(5)
$\mathrm{Mn}^{\text {IV+ }+402-\mathrm{O}^{\text {II- }} 421}$	1.88(7)	$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 321$	1.82(7)
$\mathrm{Mn}^{\text {IV }+} 402-\mathrm{O}^{\text {II- }} 422$	2.26(5)	$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 322$	2.14(5)
$\mathrm{Mn}^{\text {IV }+} 402-\mathrm{O}^{\text {II- }} 422$	2.26 (5)	$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 322$	2.14(5)
$\mathrm{Mn}^{\text {IV }+} 402-\mathrm{O}^{\text {II- }} 121$	1.90(5)	$\mathrm{Mn}^{\text {IV }+} 302-\mathrm{O}^{\text {II- }} 342$	1.97(7)
$\mathrm{Mn}^{\text {IV }+} 402-\mathrm{O}^{\text {II- }} 121$	1.90(5)	$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 362$	1.96(5)
$\mathrm{Mn}^{\text {IV+ }} 402-\mathrm{O}^{\text {II- }} 141$	1.93(7)	$\mathrm{Mn}^{\text {IV+ }} 302-\mathrm{O}^{\text {II- }} 362$	1.96(5)

Figure SI 10: Results of the FAULTS refinement of the MnO_{2} sample when refining the layer width instead of the isotropic broadening parameters Dl and Dg . Remark that the reflection (002) r at $d \approx 2.24 \AA\left(2 \theta_{\mathrm{Cu}} \approx 40.0^{\circ}\right)$ is not well modelled.

Figure SI 11: Evolution of the XRD pattern of the pyrolusite with the presence of twinning (twin plane (011), from ideal pyrolusite $\left(P_{t}=0.0\right)$ to fully twinned pyrolusite $\left(P_{t}=1.0\right)$.

To simulate the effect of twinning in the pyrolusite lattice along (011), new layers were defined so that to have the staking direction perpendicular to the twinning place. The structural model used in FAULTS is described in Table SI 3 and an illustration of a possible twinning is shown in Figure SI 12.

Table SI 3: Structural model used to described twinned pyrolusite (twin plane (011).

Cell						
$\begin{gathered} a^{\prime \prime}=4.4041 \AA \\ \alpha=90^{\circ} \end{gathered}$		$\begin{gathered} b^{\prime \prime}=5.2603 \AA \\ \beta=90^{\circ} \\ \hline \end{gathered}$		$\begin{gathered} c^{\prime \prime}=4.81664 \AA \\ \gamma=90^{\circ} \end{gathered}$		
Layers						
	Atom	x/a	y / b	z/c	Oc	ancy
$\begin{gathered} \text { Layer T1 = } \\ \text { T3 } \end{gathered}$	$\mathrm{Mn}^{\mathrm{IV+}} 11$	0	0	0		
	$\mathrm{Mn}^{\mathrm{IV+}} 12$	1/2	1/2	0		
	$\mathrm{O}^{\text {II- }} 111$	$1 / 4$	1/4	1/6		
	$\mathrm{O}^{\text {II- }} 112$	$1 / 4$	1/2	-1/3		
	$\mathrm{O}^{\text {II- }} 121$	$3 / 4$	1/2	1/3		
	$\mathrm{O}^{\text {II- }} 122$	$3 / 4$	$3 / 4$	-1/6		
	$\mathrm{O}^{\text {II- }} 131$	$3 / 4$	$1 / 4$	-1/6		
	$\mathrm{O}^{\text {II- }} 132$	$3 / 4$	0	1/3		
	$\mathrm{O}^{\text {II- }} 141$	$1 / 4$	0	-1/3		
	$\mathrm{O}^{\text {II- }} 142$	$1 / 4$	3/4	1/6		
Layer $\mathbf{T 2}=$ T4	$\mathrm{Mn}^{\text {IV+ }} 21$	0	0	0		
	$\mathrm{Mn}^{\mathrm{IV+}} 22$	$1 / 2$	1/2	0		
Transition vectors						
	Transition	x/a	y / b	z/c	Probability	Type
$\begin{gathered} \text { From layer } \\ \mathrm{T} 1 \end{gathered}$	T1 \rightarrow T1	-	-	-	0	forbidden
	$\mathrm{T} 1 \rightarrow \mathrm{~T} 2$	0	-0.299	1/2	$1-\mathrm{P}_{\mathrm{t}}$	no twinning
	T1 \rightarrow T3	-	-	-	0	forbidden
	$\mathrm{T} 1 \rightarrow \mathrm{~T} 4$	0	0.299	1/2	P_{t}	twinning
$\begin{gathered} \text { From layeT } \\ T 2 \end{gathered}$	T2 \rightarrow T1	0	-0.299	1/2	$1-\mathrm{P}_{\mathrm{t}}$	no twinning
	T2 \rightarrow T2	-	-	-	0	forbidden
	T2 \rightarrow T3	0	0.201	1/2	P_{t}	twinning
	T2 \rightarrow T4	-	-	-	0	forbidden
$\begin{gathered} \text { From layeT } \\ \text { T3 } \end{gathered}$	T3 \rightarrow T1	-	-	-	0	forbidden
	T3 \rightarrow T2	0	-0.299	1/2	P_{t}	twinning
	T3 \rightarrow T3	-	-	-	0	forbidden
	T3 \rightarrow T4	0	0.299	$1 / 2$	$1-\mathrm{P}_{\mathrm{t}}$	no twinning
$\underset{\text { T4 }}{\text { From layeT }}$	T4 \rightarrow T1	0	-0.201	1/2	P_{t}	twinning
	T4 \rightarrow T2	-	-	-	0	forbidden
	T4 \rightarrow T3	0	0.299	1/2	$1-\mathrm{P}_{\mathrm{t}}$	no twinning
	$\mathrm{T} 4 \rightarrow \mathrm{~T} 4$	-	-	-	0	forbidden

Figure SI 12: Illustration of a possible twinning of the pyrolusite along the twin plane (011).

