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1. Additional Transmission Electron Microscopy Evidence

Fig. S1. The last moments of a void’s life at 100�C, as imaged in an in-situ annealing
TEM experiment under a 200 keV electron beam. The void remains visible until it
is ⇡ 1 nm in diameter in (c).

Fig. S2. Void evolution during annealing at (a) 20�C, (b) 50�C, and (c) 150�C under a
200 keV electron beam. The dashed lines indicate the separation of the two stages.
The two-stage behaviour and equilibrium shape are consistent throughout these
temperatures. For 20�C, the void already exhibits a shape at near the equilibrium
aspect ratio before annealing starts. For the 150�C experiment, the boxed images
are snapshots from Supplementary Movie 2.
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Fig. S3. A void annealed at 130�C with the 200 keV electron beam mostly o↵ also
exhibits a two-stage shrinkage behaviour, as in the in-situ TEM annealing with the
beam continuously on. To minimise the influence from electron irradiation, images
were acquired at intervals of 30 min at low magnification with the beam on for less
than 10 s. (a-b) show the reduction in aspect ratio to r0 ⇡ 1.1, and (b-c) show a
reduction in size with a constant aspect ratio (r0 ⇡ 1.1).
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Fig. S4. (a) TEM image showing the region of Fig. 1(a) in the main text, which
initially contained two voids, at the end of the in-situ annealing experiment at
100�C. (b) The lower void has collapsed into a dislocation loop. (c) High-resolution
TEM image of the upper void, which exhibits a thick shell before annealing, and
(d) is still present after annealing.
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Fig. S5. Snapshots during TEM annealing (at 100�C under a 200 keV electron beam)
showing that shrinkage takes place one monolayer at a time. The blue lines indicate
{111} facets edge on, which do not move in the present sequence, and the red lines
the {002} facets, which move towards the centre of the void in increments of 0.2
nm.
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Fig. S6. Three sets of three consecutive snapshots during TEM annealing (at 100�C
under a 200 keV electron beam) showing that shrinkage takes place one monolayer
at a time. The blue lines indicate {111} facets edge on and the red lines the {002}
facets. (a-c) are the components of Fig. 5 in the main text. (d-f) show the reduction
of the void size by one {002} layer, and (g-i) by one {111} layer.
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Fig. S7. Void shrinkage under a 160 keV electron beam. It involves single atomic layers
for individual facets, as for 200 keV.
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2. Derivation of Equations Describing the Void Geometry

2.1. Truncated Octahedron in the Continuum Model

Fig. S8. (a) Schematic diagram of a void viewed in a <110> direction. The continuous
line outlines the truncated octahedron, and the dashed line the pyramidal trunca-
tions. All parameters are defined in the text. (b) One hexagonal {111} facet of an
{002}-truncated octahedron viewed in a <111> direction.
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cos✓ =
h1h2 + k1k2 + l1l2q

h

2
1 + k

2
1 + l

2
1

q
h

2
2 + k

2
2 + l

2
2

. (S1)

Accordingly, the angle ✓ in Fig. S8(a) between two intersecting {111} facets is

✓ = arccos(�1

3
). (S2)
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The side length of the untruncated octahedron L is

L = D{111}/sin(
1

2
✓)

=

p
3p
2
D{111}. (S3)

Since the height of the octahedron is
p
2L, by similar triangles, the side length A

of the {002} facets is

A =

p
2

2
(
p
2L�D{002})

=

p
2

2
(
p
3D{111} �D{002}). (S4)

.

We define the aspect ratio r as

r = D{002}/D{111}. (S5)

Note that the aspect ratio is r = 1.16 for an Archimedean truncated octahedron,

where truncations are taken at one third of the regular octahedron side length.

The surface area S{002} of the six square {002} facets, each with surface area S(002),

is then

S{002} = 6S(002)

= 6A2

= 3(
p
3� r)2D2

{111}. (S6)

The surface area S{111} for the eight hexagonal {111} facets, each with surface area

S(111) shown in Fig. S8(b), is then

S{111} = 8S(111)

= 8⇥
p
3

4
(L2 � 3A2)

= 3
p
3(1� (

p
3� r)2)D2

{111}. (S7)
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The volume of the regular truncated octahedron V

reg.t.oct.

is obtained by considering

the geometry of a regular octahedron of volume V
reg.oct.

with six pyramidal corners of

volume V

pyr.

cut o↵:

V

reg.t.oct.

= V

reg.oct.

� 6V
pyr.

= 1/2(
p
3� (

p
3� r)3)D3

{111}. (S8)

2.2. Thermodynamic Analysis for the Continuum Model

We now calculate the change in energy per vacancy emitted as a function of the

aspect ratio and the distance between {111} facets, using the continuum approxima-

tion for the void volume. The change in energy as a function of the aspect ratio r,

with D{111} constant, is

(
@E

@r

⇥ @r

@n

)
D{111} =

4(
p
3�(111) � �(002))⌦

(
p
3� r)D{111}

. (S9)

The change in energy as a function of D{111}, with r constant, is

(
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p
3� r)2)⌦
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p
3� (

p
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. (S10)

The curves for the two energy changes are plotted in Fig. 7 (see the main text) as a

function of r. We can determine which energy change is larger at a given aspect ratio

or D{111} by examining the quantity M defined as

M = (
@E

@r

⇥ @r

@n

)
D{111} � (

@E

@D{111}
⇥

@D{111}
@n

)
r

= (�(111)r � �(002))B, (S11)

where the coe�cient B is

B =
4
p
3⌦

(
p
3� r)(

p
3� (

p
3� r)3)D{111}

. (S12)

B is always positive within an aspect ratio range of (
p
3� 6

p
3,
p
3).
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2.3. Truncated Octahedron in the Quantised Model

A truncated octahedron can be described by the distances from the geometrical

centre between each set of parallel facets. The continuum model above is a special

case that assumes equal distances between {002} or {111}. In the quantised model,

we describe the distance from the void centre to each individual facet (hkl) in terms of

the equivalent number of atomic layers I(hkl). The distance dhkl (see Fig.5 in the main

text and Fig. S6 in the Supplementary Material) is the sum of I(hkl) + I(h̄k̄l̄) + 1 for

a particular set of parallel facets. An arbitrary set of I(hkl) will define an arbitrarily

truncated octahedron. The equations below are for a FCC lattice only.

2.3.1. Surface Area of an Arbitrarily Truncated Octahedron. The total surface area of

all the {002} facets is

S{002} = S(200) + S(020) + S(002) + S(2̄00) + S(02̄0) + S(002̄). (S13)

As shown in Fig. S9(a), we take (200) as one of the facets for illustration. Equations

for other facets can be obtained with similar reasoning.

S(200) = A

0 ⇥A

00
, (S14)

where A

0
and A

00
are the side lengths of the (200) facet. They are defined by pairs of

{111} facets being truncated by (200) facets.

A

0
=

ap
2
(I(11̄1) + I(111̄) � I(200)), (S15)

A

00
=

ap
2
(I(111) + I(11̄1̄) � I(200)). (S16)

where a is the lattice parameter of aluminium.
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Fig. S9. (a) Schematic diagram of a void viewed in the [100] direction, showing the
parameters used in the quantised model. The continuous line outlines the truncated
octahedron with vacancies shown on the edges as grey spheres. All parameters are
defined in the text. (b) Schematic diagram of a void viewed in the [111] direction.
Arrows indicate I(11̄1) and I(200) respectively.

For the {111} facets,

S{111} = S(111) + S(1̄11) + S(11̄1) + S(111̄) + S(1̄1̄1) + S(1̄11̄) + S(11̄1̄) + S(1̄1̄1̄). (S17)

This is shown in Fig. S9(b) for (111) as an example; other facets can be obtained using

a similar reasoning.

S(111) =

p
3

4
(L2

(111) �
X

(Ai)2), (S18)

L(111) =
ap
2
(I(111̄) + I(11̄1) + I(1̄11) � I(111)), (S19)

where L(111) is the side-length of the octahedral (111) facets without truncation. Ai

corresponds to the side-length of each of the three {002} facets intersecting (111)

facets.
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2.3.2. Number of Vacancies in an Arbitrarily Truncated Octahedron. Now consider an

arbitrarily truncated octahedron as the result of a cuboid with tetrahedral truncations

at eight corners cut by {111} facets. The total number of vacancies within the void,

n, then is

n = n0 � n1 + n2, (S20)

where n0, n1, n2 is the number of vacancies within the cuboid, the tetrahedral trun-

cations and overlap areas of the tetrahedral truncations, respectively.

Fig. S10. Schematic diagram illustrating the algorithm for calculating the number of
vacancies in an arbitrarily truncated octahedron. The cuboid is now truncated by
two adjacent {111} facets. The number of vacancies left is the total number of vacan-
cies within the cuboid subtracted by the number of vacancies within the tetrahedral
truncations plus the overlapping region between those tetrahedra. The overlapping
region is composed of the intersection between two equivalent tetrahedra.

The number of vacancies, n0, within the cuboid is

n0 = b(I(200) + I(2̄00) + 1)(I(020) + I(02̄0) + 1)(I(002) + I(002̄) + 1)/2c+ o, (S21)
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where

o =

8
>>>><

>>>>:

1 if all I{002} are even,

or any two pairs of I{002} of opposite facets are odd, (S22a)

0 otherwise. (S22b)

The number of vacancies, n1, within eight tetrahedral truncations by {111} facets

is

n1 =
X

g(I{111}, I{002}). (S23)

Consider a (111) facet as an example. The number of vacancies within the tetrahedron

bounded by (111), (200), (020) and (002) is

g(I(111), I(200), I(020), I(002)) =

8
>><

>>:

p(p+ 1)(4p� 1)

6
if I(200) + I(020) + I(002) is even, (S24a)

p(p+ 1)(4p+ 5)

6
if I(200) + I(020) + I(002) is odd, (S24b)

where

p = b
I(200) + I(020) + I(002)

2
c � I(111). (S25)

The number of vacancies within the fourteen overlapping areas, n2, is

n2 =
X

h(I{111}, I{002}). (S26)

where the function h is defined below. Take the overlapping region of the tetrahedron

cut o↵ by (111) and (1̄11) for example: they share the adjacent (002) and (020) facets.

h(I(111), I(1̄11), I(002), I(020)) =

g(I(111), I(200), I(020), I(111) � I(1̄11) � 1)

+ g(I(1̄11), I(200), I(020), I(1̄11) � I(111) � 1) + q,

(S27)

where

q =

8
<

:

(v2 + 2v)/4 if v is even, (S28a)

(v2 + 2v + 1)/4 if v is odd, (S28b)

and

v = I(002) + I(020) � I(111) � I(1̄11) � 1. (S29)
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3. Derivation of Vacancy Emission Rate

In general, the vacancy emission rate dn

dt

is given by

dn

dt

= D

v

rCS, (S30)

where D

v

is the vacancy di↵usivity, rC is the vacancy concentration gradient at the

void surface and S is the activated surface area from which vacancies are emitted

(Crank, 1979). Assuming a regular truncated octahedron, only the {002} facets are

activated in Stage I, while both the {111} and the {002} facets are available for

vacancy emission in Stage II.

We assume that the vacancy concentration reaches a steady state at the void surface

under annealing. Consequently, the vacancy concentration profile satisfies the Laplace

equation according to Fick’s Second Law:

@C

@t

= D

v

r2
C = 0. (S31)

At a given temperature T , the vacancy concentration C

v

at the void surface is given

by:

C

v

/C0 = exp{(dE/dn)/k
B

T}, (S32)

where C0 is the equilibrium vacancy concentration, dE/dn is the change in void energy

per vacancy emitted (see Eqs. S9 and S10) and k

B

is Boltzmann’s constant.

With boundary conditions given by C = C

v

at the void surface and C = C0 as the

equilibrium vacancy concentration in the matrix far from the void, the equation for

the vacancy concentration profile in the <hkl> direction is

C(x) = C0 +
0.5D{hkl}

x

(C
v

� C0), (S33)

where D{hkl} represents the distance between major facets {hkl} (either {002} or

{111}) and x is the distance from the truncated octahedron centre along the <hkl>

IUCr macros version 2.1.6: 2014/01/16



16

directions (Crank, 1979). By assuming that each facet along a <hkl> direction is not

flat but curved with constant curvature, we obtain a simple analytical solution to the

Laplace equation, as written in Eq. S33.

Fig. S11. (a) Calculation of the vacancy concentration profile around a truncated
octahedral void with a distance between {111} facets of 10 nm and an aspect ratio
of 1.05. The present case is for a temperature of 100�C. The calculation was per-
formed using the finite element method in Mathematica, with boundary conditions
of concentration C

v

at the void surface and C0 at the bounding box edges. The
box edges are 80 nm in length in this case, which is the typical thickness of the
void-containing regions examined by TEM. A vacancy formation energy of 0.2 eV
was chosen in order to reflect the experimental condition under continuous irradia-
tion by the electron beam. The arrow indicates the <001> direction. (b) Vacancy
concentration as a function of distance from the centre of the void along <001>.

The numerical Laplace solution for a truncated octahedral geometry is calculated

by the Finite Element Method (FEM) using Mathematica (see Fig. S11). Whereas in

the analytical solution the vacancy concentration is assumed to reach its equilibrium

value at infinity, FEM sets the equilibrium concentration C0 at the box boundaries
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and C

v

at the void surface. This results in a di↵erence in concentration between the

two solutions away from the void surface, as shown in Fig. S11. However this di↵erence

will be reduced when larger FEM boundaries are considered. In any case, the vacancy

concentration profile along a <100> direction obtained numerically agrees well with

the analytical solution in Eq. S33 and yields almost the same concentration gradient

at the void surface. This good agreement justifies the use of the spherical assumption

for the purpose of simple and reliable vacancy emission analysis, as shown below.

Taking the derivative of Eq. S33 with respect to distance, the concentration gradient

at the void surface rC in the <hkl> direction is

rC = �2(C
v

� C0)

D{hkl}
. (S34)

The self-di↵usion coe�cient D
s

is defined as

D

s

= ⇠D

v

C0⌦, (S35)

where ⇠ is the correlation factor for self di↵usion. For FCC structures, ⇠=0.781 (Volin

& Ballu�, 1968). We can transform Eq. S30 into

dn

dt

=
2SD

s

⇠D{hkl}⌦
(exp{(dE/dn)/k

B

T}� 1). (S36)

As the activated surface area for vacancy emission, S, and the energy reduction per

vacancy emitted dE/dn in Eq. S36 are di↵erent for the two stages of shrinkage, the

model derived here di↵ers from previous spherical models (Volin & Ballu�, 1968;

Westmacott et al., 1968). Thus, by combining Eqs. S6, S9 and S36, we can get the

vacancy emission rate for Stage I of void evolution as plotted in Fig. 11(a) in the main

text:

dn

dt

= �A1(exp(
A2p
3� r

)� 1)
(
p
3� r)2

r

, (S37)

where

A1 =
6D

s

D{111}
⇠⌦

, (S38)
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and

A2 =
4(
p
3�(111) � �(002))⌦

k

B

TD{111}
. (S39)

Again, here we assume a regular truncated octahedron. Similarly, combining Eqs. S6,

S7, S10 and S36 leads to the vacancy emission rate for Stage II as plotted in the

main text Fig.11(b):

dn

dt

= �A3(exp(
A4

D{111}
)� 1)D{111}, (S40)

where

A3 =
6D

s

((7�
p
3)r2 � 4

p
3r + 3)

r⇠⌦
, (S41)

and

A4 =
4(
p
3�(111) � (

p
3�(111) � �(002))(

p
3� r)2)⌦

k

B

T (
p
3� (

p
3� r)3)

. (S42)

A1, A2, A3 and A4 are all factors that include constant parameters.
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