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I. THE TWO-SCALE MODEL IN FIG. 4 OF THE MAIN TEXT

The theoretical section of the main text is illustrated with a model of porous material comprising two different
structural level. The large-scale structure, corresponding to the mesopores, was modelled as a clipped Gaussian
random field. The small-scale structure, corresponding to micropores, was modelled as a Boolean model. The two
structures are combined into a single model as sketched in Fig. SI-1, i.e. the solid phase of the two-scale structure is
the intersection of the solid phases in each substructure. We use the same notation as in the main text, and we refer
to the pore space as phase P and the solid phase as S.

Because the two substructures are statistically independent from one another, the two-point probability function
of the solid phase in the entire two-scale structure is the following product

PSS(r) = P
(1)
SS (r)P

(2)
SS (r) (SI-1)

where the superscripts 1 and 2 correspond to the small-scale and large-scale structures, respectively.
Evaluating Eq. (SI-1) for r = 0, the volume fraction of the solid is obtained as

φS = φ
(1)
S φ

(2)
S (SI-2)
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FIG. SI-1: Sketch of the hierarchical model of micro- and meso-porous material. The small-scale structure is modelled a Boolean
model (a) and the large-scale structure as a clipped Gaussian random field (b). The overall structure (c) is the intersection of
the two levels. The solid phase S is shown in white, and the pore space P is in black.
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The surface area of the model is calculated from the derivative of PSS(r) for r = 0, which leads to

APS = φ
(2)
S A

(1)
PS + φ

(1)
S A

(2)
PS (SI-3)

where A
(i)
PS is the surface area of the ith structure, obtained as(

dP
(i)
SS

dr

)
r=0

= −1

4
A

(i)
PS (SI-4)

where the derivative is estimated for r = 0.

In order to calculate the SAXS patterns of the model, we rewrite Eq. (SI-1) in terms of χ(i)(r) = P
(i)
SS(r)−

[
φ

(i)
S

]2
as follows

χ(r) = χ(1)(r)χ(2)(r) +
[
φ

(1)
S

]2
χ(2)(r) +

[
φ

(2)
S

]2
χ(1)(r)

'
[
φ

(1)
S

]2
χ(2)(r) + φ

(2)
S χ(1)(r) (SI-5)

where the second line results from assuming that the characteristic scales of the two structural levels are distinctly
different [1]. The SAXS intensity of the model is then calculated by evaluating numerically the Fourier transform of
χ(r).

A. Small-scale structure: Boolean model

In the Boolean model, the solid phase of the material is modelled as the union of spheres with radius Rs, the centres
of which are distributed in spaces following a Poisson point process with density θs. The volume fraction of the solid

phase φ
(1)
S is calculated as [2, 3]

φ
(1)
S = 1− exp

(
−θs

4πR3
s

3

)
(SI-6)

and the volume fraction of the pore space is φ
(1)
P = 1−φ(1)

S . For generating the realisation in the inset of Fig. 4 of the

main text, with φ
(1)
S = 0.7 and Rs = 20 Å, the density θs of the underlying Poisson point process was calculated as

θs = − 3

4πR3
s

ln(1− φ(1)
S ) (SI-7)

The corresponding numerical value is θs = 0.287 10−3 Å−3.
The two-point probability function of the solid phase is [2, 3]

P
(1)
SS (r) = 2φ

(1)
S − 1 + (1− φ(1)

S )2 exp (θsΩs(r)) (SI-8)

where Ωs(r) is the intersection volume of two spheres with radius Rs at a distance r from one another, i.e.

Ωs(r) =
4πR3

s

3

[
1

2

(
r

2Rs

)3

− 3

2

(
r

2Rs

)
+ 1

]
(SI-9)

for r ≤ 2Rs and 0 otherwise. From the value of P
(1)
SS (r) the correlation function is calculated as

χ(1)(r) = (1− φ(1)
S )2 [exp (θsΩs(r))− 1] (SI-10)

which is used in Eq. (SI-5) to calculate the SAXS intensity of the model.
From the above formulae, the following expression is obtained for the surface area

A
(1)
PS = − ln(1− φ(1)

S )(1− φ(1)
S )

3

Rs
(SI-11)

which results from Eq. (SI-4). For Rs =20 Å and φ
(1)
S = 0.7, the value is A

(1)
PS ' 0.0542 Å−1. This value is equivalent

to 542 m2/cm3.
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B. Large-scale structure: clipped Gaussian random field

The large-scale structure is modelled as a clipped Gaussian random field [4]. In other words, phase S is modelled
as the region of space where a given Gaussian random field (GRF) w(x) takes values larger than a given threshold
α. The GRF can be seen as resulting from the interference of N random waves, with random wave vectors qi and
random phase ϕi as

w(x) =

√
2

N

N∑
i=1

cos(qi · x− ϕi) (SI-12)

If the phases are uniformly distributed in [0, 2π], the resulting values of w are Gaussian-distributed with average 0

and the factor
√

2/N ensures that the variance is equal to 1. The correlation function of the field g(r) is defined as

g(r) = 〈w(x)w(x + r)〉 (SI-13)

and it depends on the statistical distribution of the wave vectors qi. A convenient form for g(r) is the following [5]

g(r) =
1

cosh(κr/λ)

sin(2πr/λ)

2πr/λ
(SI-14)

where λ is a characteristic length and κ is a parameter that can be thought of in terms of the disorder of the structure.
This form is quadratic at the origin g(r) ' 1− (r/l)2 with

1

l2
=

1

λ2

(
2π2

3
+
κ2

2

)
(SI-15)

The value of l is needed to calculate the specific surface area of the model, as we show hereunder.
Because the values of the GRF are Gaussian distributed (variance 1, average 0), the solid fraction of the material is

φ
(2)
S =

∫ ∞
α

1√
2π

exp(−t2/2) dt (SI-16)

The two-point probability function P
(2)
SS (r) is calculated as follows [4]

P
(2)
SS (r) = φ

(2)
S −

1

2π

∫ π/2

arcsin(g(r))

exp

(
−α2

1 + sin(x)

)
dx (SI-17)

The specific surface area of the model is obtained from the derivative of PSS(r) in the limit r → 0. This leads to

A
(2)
PS =

23/2

π
exp(−α2/2)

1

l
(SI-18)

The model used in the main text assumes the particular values: φ
(2)
S = 0.5 (corresponding to α = 0), λ = 200 Å

and κ = 2. In this case, the two-point function reduces to

χ(2)(r) =
arcsin(g(r))

2π
(SI-19)

and the surface area takes the values A
(2)
PS = 0.0132 Å−1, i.e.. 132 m2/cm3.

II. SCALE-DEPENDENT HETEROGENEITY WITH A THREE-POINT PROBE

We generalise here the developments of Sec 2.2 of the main text, by considering the scale-dependent heterogeneity
defined with the following three-point probe

Πr(x) =
1

3

[
δ(x− x1) + δ(x− x2) + δ(x− x3)

]
(SI-20)

where x1, x2 and x3 are located at the vertices of an equilateral triangle with side r.
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In order to calculate the values of the filtered density ρπ with the three-point probe, as well as their corresponding
probabilities, one has to consider three-point probability functions, which generalise the stick-probability function
discussed in the main text [6]. In particular, we shall make use of the probability PPPP (r) that the three points of
a randomly-oriented equilateral triangle with side r all belong to phase P . This function satisfies PPPP (0) = φP
and PPPP (r) → φ3

P for large values of r. For intermediate values of r, PPPP (r) contains higher-order structural
information in addition to the volume fraction and standard two-point correlation function.

Besides PPPP (r) one can also define other three-point functions such as PPPS(r), PSSP (r), etc. These three-
point functions, however, are not independent from PPPP (r). For example, the probability that two points of the
triangle belong to phase P irrespectively of the phase to which the third point belongs is PPP . In other words
PPP (r) = PPPP (r) + PPPS(r), which can also be written as

PPPS(r)− φ2
PφS = φPφSγ(r)−

[
PPPP (r)− φ3

P

]
(SI-21)

Moreover, in the case of isotropic media all the vertices of the equilateral triangle are equivalent so that PPSP (r) =
PSPP (r) = PPPS(r). Another relation is obtained observing that the probability that any one point of the triangle
belongs to phase P , irrespectively of the phases that the other two points belong to, is nothing but φP . The latter
probability can be decomposed as PPPP + PPPS + PPSP + PPSS . This leads to

PSSP (r)− φ2
SφP = −2φPφSγ(r) +

[
PPPP (r)− φ3

P

]
(SI-22)

Finally, it has to be noted that Eq. (SI-21) would still hold if phases P and S were swapped. Combining this with
Eq. (SI-22) leads to

PSSS(r)− φ3
S = 3φPφSγ(r)−

[
PSSS(r)− φ3

S

]
(SI-23)

Equations (SI-21), (SI-22) and (SI-23) show that out of the eight possible triangular correlation functions, only one
is linearly independent from the two-point correlation function.

Limiting ourselves to the case of isotropic media, the value of ρπ depends on the three-point probability functions
as follows

ρπ =


ρP with probability PPPP (r)
(2ρP + ρS)/3 with probability 3× PPPS(r)
(ρP + 2ρS)/3 with probability 3× PSSP (r)
ρS with probability PSSS(r)

(SI-24)

Using these probabilities, the heterogeneity corresponding to the three-point probe can then be calculated as

σ2{Π} = ρ2
PPPPP (r) +

(2ρP + ρS)2

3
PPPS(r)

+
(ρP + 2ρS)2

3
PSSP (r) + ρ2

SPSSS(r)− 〈ρπ〉2 (SI-25)

where the average value is evaluated as 〈ρπ〉 = φP ρP + ρSφS .
The three-point probability functions individually carry higher-order structural information than the correlation

function γ(r). However, using the relations from Eqs (SI-21) to (SI-23), one finds the following simple result

σ2{Π} = Q
1 + 2γ(r)

3
(SI-26)

which has the same statistical interpretation as Eq. (18) of the main text. Equation (SI-26) depends only on the
standard correlation function γ(r).

III. PROPERTIES OF THE THREE MAIN PROBES CONSIDERED IN THE MAIN TEXT

A. Spherical probe

The normalised spherical probe of radius R is defined as

ΠR(y) =
3

4πR3
Θ(R− |y|) (SI-27)
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the Fourier transform of which is

Π̂R(q) = 3
sin(qR)− (qR) cos(qR)

(qR)3
(SI-28)

The corresponding autocorrelation function ΩR(r) is calculated from the intersection volume of spheres at distance
r from one another. This leads to

ΩR(r) =
3

4πR3

{
1− 3

2

( r

2R

)
+

1

2

( r

2R

)3
}

(SI-29)

The following moments of ΩR(r) are required for the analysis of the heterogeneity curves σ2{Π} for small probes

µΩ
n =

∫ ∞
0

rnΩR(r)4πr2dr (SI-30)

From Eq. (SI-29), one finds

µΩ
n = 12× (2a)n

(
2

n+ 3
− 3

n+ 4
+

1

n+ 6

)
(SI-31)

This leads to the particular values µΩ
0 = 1, µΩ

1 = (36/35)R, µΩ
2 = (6/5)R2 and µΩ

3 = (32/21)R3 which are used in the

main text. The corresponding values of α
(n)
π are in Tab. 1 of the main text. The values of Ω(n) and of β

(n)
π in Tab. 1

are obtained by evaluating the successive derivatives of Eq. (SI-29).

B. Gaussian probe

We define the Gaussian probe as

Πa(y) =
1

(2π)3/2a3
exp

(
− y2

2a2

)
(SI-32)

where a is the standard deviation, which we refer to hereafter as the size of the probe. It is to avoid any confusion
with the heterogeneity σ2{Π} that we use the notation a for the standard deviation rather than the usual σ.

The convolution of two Gaussian probes with sizes a and b is itself a Gaussian with size
√
a2 + b2, i.e.

Ga ∗Gb = G√a2+b2 (SI-33)

Therefore the autocorrelation of a Gaussian probe is

Ωa(r) =
1

8π3/2a3
exp

(
− r2

4a2

)
(SI-34)

The moments µΩ
n are obtained by integrating the latter equation, and taking into account the following general

mathematical results ∫∞
0
x2 exp(−x2)dx =

√
π/4

∫∞
0
x3 exp(−x2)dx = 1/2∫∞

0
x4 exp(−x2)dx = 3

√
π/8

∫∞
0
x5 exp(−x2)dx = 1

(SI-35)

The result is

µΩ
0 = 1 µΩ

1 = 4a/
√
π

µΩ
2 = 6a2 µΩ

3 = 32a3/
√
π

(SI-36)

The values of α
(n)
π gathered in Tab. 1 of the main text are obtained from the latter values of µΩ

n . The values of Ω(n)

and of β
(n)
π in Tab. 1 are obtained by evaluating the successive derivatives of Eq. (SI-34).
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C. q-Spherical probe

We define the q-sphere Jν(y) as the probe, the Fourier transform of which is a sphere of radius ν in reciprocal
space. The Fourier transform of this probe is

Π̂ν(q) = Θ (ν − |q|) (SI-37)

The parameter ν can be thought of as a cutoff frequency, which is related to a characteristic size L of the probe in
real-space via the inverse relation L ' 1/ν. The real-space expression is obtained by a Fourier transform, which leads
to

Πν(y) =
ν3

6π2

3[sin(ν|y|)− (ν|y|) cos(ν|y|)]
(ν|y|)3

(SI-38)

This probe has the intriguing property of being stable by convolution. For example, the autocorrelation of Πν is given
by the same expression as Πν itself, namely

ΩJ(r) =
ν3

6π2

3[sin(νr)− (νr) cos(νr)]

(νr)3
(SI-39)

This results from the fact that Π̂ν , the Fourier transform of Πν , is a binary function that can only take the values 0
or 1. The Fourier transform is therefore left unchanged if it is raised to the power two: Π̂ν = Π̂2

ν . In real-space, this
converts to a stability with respect to the autocorrelation.

It is difficult to estimate the moments µΩ
n by a direct evaluation, because the integrals of the type

ν3

6π2

∫ ∞
0

rn
3[sin(νr)− (νr) cos(νr)]

(νr)3
4πr2 dr (SI-40)

do not converge for n ≥ 1. We therefore use a different approach.
Quite generally, the form factor Pπ(q) of any probe is the Fourier transform of Ωπ(r), namely

Pπ(q) =

∫ ∞
0

sin(qr)

qr
Ωπ(r)4πr2dr (SI-41)

Developing sin(qr)/(qr) as a Taylor series

sin(qr)

qr
= 1− 1

3!
(qr)2 +

1

5!
(qr)4 − 1

7!
(qr)6 + . . . (SI-42)

shows that all the moments of even order are proportional to the equivalent derivative of Pπ for q = 0. The actual
relation is (

d2nPπ
dq2n

)
q=0

=
(−1)n

2n+ 1
µΩ

2n (SI-43)

This equation is quite general. In the particular case of the q-sphere, it shows that all moments of even order are
equal to zeros because Pπ(q) is a constant close to q = 0. In particular, we have µΩ

2 = 0.
The moments of odd order are obtained also in an indirect way, from the following general asymptotic relation for

the SAXS intensity

I(q) = 8πQ

(
−γ(1)

q4
+

2γ(3)

q6
+
−3γ(5)

q8
+ . . .

)
(SI-44)

where γn are the nth derivatives of the correlation function γ(r) for r = 0. Equation (SI-44) is the classical Kirste-
Porod expression [7], which can be obtained from the direct expression of I(q) as the Fourier transform of γ(r) via
integration by parts. When this asymptotic expression is used in the expression of σ2{Π} in reciprocal space, one
finds

σ2{Π} = constant +
1

(2π)3

∫ ν

8πQ

(
−γ(1)

q4
+

2γ(3)

q6
+
−3γ(5)

q8
+ . . .

)
4πq2dq
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= constant +Q

[
4γ(1)

πν
− 8γ(3)

3πν3
+

12γ(5)

5πν5
+ . . .

]
(SI-45)

Because of the unknown additive constant, the value of the lower integration bound does not matter. A direct
comparison with Eq. (21) of the main text leads to

µΩ
1 =

4

πν
and µΩ

3 = − 16

πν3
(SI-46)

and the corresponding values of α
(n)
π are reported in Tab. 1 of the main text. The values of Ω(n) and of β

(n)
π in Tab.

1 are obtained by evaluating the successive derivatives of Eq. (SI-39).
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