

J. Appl. Cryst. (2015). 48, doi:10.1107/S160057671501362X Supporting information

Volume 48 (2015)

Supporting information for article:

Scattering from phase-separated vesicles. I. An analytical form
factor for multiple static domains

Frederick A. Heberle, Vinicius N.P. Anghel and John Katsaras

http://dx.doi.org/10.1107/S160057671501362X
http://dx.doi.org/10.1107/S160057671501362X
http://journals.iucr.org/j

J. Appl. Cryst. (2015). 48, doi:10.1107/S160057671501362X Supporting information, sup-1

S1. Monte Carlo simulations

Figure S1 Schematic illustration of the Monte Carlo algorithm. A, LUV object consisting of two

domains and a continuous “surround” phase. Subvolumes of differing contrast (inner headgroups,

outer headgroups, and hydrocarbon for each phase) are indicated by different colors. B, random points

are generated within each subvolume and grouped by the sign of their contrast. C, pair-distance

histograms are generated from same-sign points (upper and lower) as well as cross-sign points

(middle). D, same- and cross-sign histograms are combined to generate a contrast-weighted pair-

distance histogram for the LUV. E, the scattered intensity 𝐼𝐼(𝑞𝑞) is calculated from the ensemble-

averaged 𝑃𝑃(𝑟𝑟) histogram. Complete details are provided in Section 3 of the main text.

S2. Nonlinear least squares optimization

S2.1 Overview

In this section, we discuss an implementation of the multidomain model for nonlinear least

squares (NLLSQ) optimization of experimental data, using a computer algebra system (CAS). We first

discuss strategies for increasing function call speed, and then demonstrate the program by fitting

simulated data. The custom analysis package was written using Mathematica v10.0 (Wolfram Research,

Champaign, IL), and is available from the authors upon request. All calculations were performed using an

Intel Xeon E5-2687W processor (3.10GHz, 8 physical/16 logical cores) and 64 GB RAM.

S2.2 Speed optimization

Our objective is to fit experimental data using the multidomain model, and to do so within a

reasonable time frame. As such, Eq. 35 must be efficiently implemented in a nonlinear least squares

(NLLSQ) routine (here, we use Mathematica’s built-in NonlinearModelFit wrapper). As a series

expansion, calculation of the heterogeneous scattering contribution in Eq. 35 (and in particular the form

factors 𝑊𝑊𝑙𝑙) presents a significant speed bottleneck. To illustrate the problem, we consider a single shell

vesicle model with parameters given in Table 1. The integral form of 𝑊𝑊𝑙𝑙 for this model is given by Eq.

40. Figure S2 shows the time required to numerically integrate Eq. 40 for various values of the expansion

degree l:

Figure S2 Timings for calculating the heterogeneous form factor 𝑊𝑊𝑙𝑙 via numerical integration of Eq. 40.
The timings are nearly constant (~ 0.1 s) for 𝑙𝑙 < 50, then increase gradually to ~ 0.5 s at 𝑙𝑙 = 100.
Calculation times for the expansion coefficient 𝑤𝑤�𝑙𝑙0 (Eq. 33) are independent of l and more than one order
of magnitude faster than calculation of 𝑊𝑊𝑙𝑙.

Using the data in Fig. S2, we can estimate the computation time needed to evaluate a model 𝐼𝐼(𝑞𝑞)

curve for comparing to an experimental 𝐼𝐼(𝑞𝑞) data set. Adding the timings up to degree l, we find that

calculation of a single 𝐼𝐼(𝑞𝑞,𝑅𝑅) data point costs a few seconds for 𝑙𝑙 < 50, while calculation to 𝑙𝑙 = 100

costs tens of seconds. Moreover, to account for polydispersity via numerical integration of 𝐼𝐼(𝑞𝑞,𝑅𝑅) over a

Schulz distribution, the calculation must be performed for tens of R values. Finally, the polydisperse

computation in turn must be performed for 10-100 q values, the typical size of a SANS data set.

Accounting for these multiplicative factors, calculation of a single polydisperse 𝐼𝐼(𝑞𝑞) curve costs on the

order of 102-104 seconds (i.e., minutes to hours), if the heterogeneous form factor is numerically

integrated in each function call.

S2.2.1. Pre-evaluation and memoization of expensive terms

The calculations from the previous section reveal that repetitive numerical integration of Eq. 40 is

prohibitively slow and unsuitable for data analysis. However, the timings can be dramatically improved

by pre-evaluating the integral for each expansion degree, to generate a new function of sines, cosines, and

sine integrals that is more efficiently computed by the CAS, and can be written to a database for

permanent use. The first three such evaluations are given in Eq. 41; going further, we used Mathematica

to evaluate both Eq. 40 (𝑊𝑊𝑙𝑙) and Eq. 26 (𝑤𝑤�𝑙𝑙0) for the first 100 expansion degrees, storing the resulting

functions in a text file that is read at runtime. Additional speed gains can be realized with memoization,

whereby the results of expensive function calls are stored, and the cached result returned whenever a set

of inputs is reused. Our NLLSQ implementation memoizes both 𝑊𝑊𝑙𝑙 and 𝑤𝑤�𝑙𝑙0. Figure S3 shows average

timings for a monodisperse 𝐼𝐼(𝑞𝑞,𝑅𝑅) function call vs. maximum expansion degree, with and without pre-

evaluation and memoization of 𝑊𝑊𝑙𝑙 and 𝑤𝑤�𝑙𝑙0:

Figure S3 Computation time for calculating monodisperse 𝐼𝐼(𝑞𝑞,𝑅𝑅) for a single q and R value, using
different techniques as indicated in the legend: P refers to pre-evaluation of heterogeneous form factor
integrals; and M refers to function memoization, as described in the text.

Figure S3 shows that pre-evaluation reduces 𝐼𝐼(𝑞𝑞,𝑅𝑅) computation time by nearly two orders of

magnitude (blue) relative to fresh numerical integration (red), owing primarily to more efficient

calculation of 𝑊𝑊𝑙𝑙 by the CAS. Memoization results in an additional 102–fold improvement (orange),

although it is important to recognize that these gains are realized only when a given set of inputs is

reused. Since 𝑊𝑊𝑙𝑙 depends on the vesicle size distribution, the bilayer’s SLD profile, and q [i.e., 𝑊𝑊𝑙𝑙 =

𝑊𝑊𝑙𝑙(𝑅𝑅, 𝑡𝑡𝑎𝑎𝑎𝑎,𝑑𝑑 , 𝑡𝑡𝑎𝑎𝑎𝑎,𝑎𝑎 ,𝜌𝜌𝑑𝑑 ,𝜌𝜌𝑎𝑎 , 𝑞𝑞)], NLLSQ optimization of any of these parameters will not benefit from

memoization of 𝑊𝑊𝑙𝑙.

The timings shown in Fig. S3 do not reflect the costs associated with vesicle polydispersity, or the

size of the experimental data set. Figure S4 shows timings for a polydisperse 𝐼𝐼(𝑞𝑞) curve of 50 data points,

calculated by numerical integration of 𝐼𝐼(𝑞𝑞,𝑅𝑅) over a Schulz distribution, using N-point Newton-Cotes

quadrature (where N is the number of sampled R values). As expected, there is a linear dependence on the

number of sampled R values (red, blue, and orange curves):

Figure S4 Computation time for calculating polydisperse 𝐼𝐼(𝑞𝑞). Shown are timings for calculating a full
polydisperse curve at 50 q values using different techniques as indicated in the legend: RN refers to full
numerical integration of 𝐼𝐼(𝑞𝑞,𝑅𝑅) over the Schulz distribution using N-point quadrature; SFFL refers to the
separated form factor-Laplace approximation; P refers to pre-evaluation of heterogeneous form factor
integrals; and M refers to function memoization, as described in the text.

As discussed in the main text, the separated form factors-Laplace (SFFL) approximation (derived

in Appendix B) offers an alternative to discrete sampling of the size distribution. Figure S4 also shows

timings for the SFFL approximation. For 𝑙𝑙 < 30, the computational cost of the SFFL (green curve) is

similar to 80 point quadrature of the Schulz distribution (orange curve). However, while memoization

results in a significant speed increase for both methods, the boost is particularly dramatic for the SFFL,

where a repeat function call is nearly 103-fold faster (green and brown curves, compared to orange and

purple curves). In fact, the true advantage of the SFFL derives from memoization. Like 𝑊𝑊𝑙𝑙, the

heterogeneous thin shell form factor 𝐿𝐿𝑙𝑙 (Eq. 57) is the speed bottleneck in the SFFL calculation, and can

also be pre-evaluated to arrive at an expression (Eq. 59) that is more efficiently calculated by the CAS.

Unlike 𝑊𝑊𝑙𝑙 however, 𝐿𝐿𝑙𝑙 depends only on the vesicle size distribution parameters and q [i.e., 𝐿𝐿𝑙𝑙 =

𝐿𝐿𝑙𝑙(𝑅𝑅𝑚𝑚,𝜎𝜎, 𝑞𝑞)], and not on the bilayer’s SLD profile. As such, fitting data with the SFFL benefits from

memoization of 𝐿𝐿𝑙𝑙 over a broader range of optimization conditions, compared to numerical integration of

𝐼𝐼(𝑞𝑞,𝑅𝑅) over the Schulz distribution. This is especially true when the sample’s size distribution can be

determined from independent experiments (e.g., dynamic light scattering, or high contrast SANS

experiments as discussed in Section 4.3), and therefore need not be varied in the fit. The tradeoff in using

the SFFL is accuracy in the high q regime (q > 0.1 Å-1), as shown in Fig. 12. For determining domain size

and configuration—which influences the scattered intensity primarily at q < 0.1 Å-1—the SFFL

approximation is a reasonable alternative, particularly when speed is an issue.

S2.3 Data fitting in the low-q regime

Finally, we demonstrate an application of the NLLSQ algorithm for obtaining information about

domain size and configuration. Simulated data mimicking experimental data from previous studies

(Heberle, Petruzielo, et al., 2013; Heberle, Doktorova, et al., 2013) was generated using parameters listed

in Table S1, and Gaussian noise was added. We varied the domain area fraction and the NSLDs of each

phase, using 30 expansion orders to calculate the polydisperse 𝐼𝐼(𝑞𝑞). The results of a 30 point quadrature,

compared to the SFF-Laplace approximation, are compared in Table S1 and Figure S5:

Table S1 Parameters used in NLLSQ analysis and fit results.

Parameter Simulated value
Recovered values

30 point quadrature SFF-Laplace

𝑅𝑅𝑚𝑚 [Å] 300 -- --

𝜎𝜎 0.3 -- --

𝑡𝑡 [Å] 30 -- --

𝜌𝜌𝑚𝑚 [fm/Å3] 0.181 -- --

𝜌𝜌𝐿𝐿𝑑𝑑 [fm/Å3] 0.03 0.036 0.025

𝜌𝜌𝐿𝐿𝐿𝐿 [fm/Å3] 0.23 0.233 0.229

𝑎𝑎𝑑𝑑 0.25 0.253 0.241

𝑁𝑁𝑑𝑑 8 -- --

maxl* N/A 30 30

𝜒𝜒𝑟𝑟𝑟𝑟𝑑𝑑2 N/A 1.225 1.194

*maximum expansion degree l

Figure S5 Screenshot of NLLSQ analysis of simulated polydisperse data using 30 point quadrature (A) or
the SFF-Laplace approximation (B), as described in the text.

For both algorithms, final recovered parameter estimates and reduced 𝜒𝜒2 are similar (Table S1). However,

the SFFL analysis completed in 11 s, compared to 170 s for the numerical integration. The effects of

memoization are clear from Fig. S5B, which shows that the first calculation of 𝐿𝐿𝑙𝑙(𝑅𝑅𝑚𝑚,𝜎𝜎, 𝑞𝑞) during

iteration 1 required 10.4 s; the remaining 5 iterations took a combined 0.4 s to complete. In contrast, the

average iteration time for numerical integration was 54.5 s (Fig. S5A).

