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Figure S1: Plots of RSw/RTw (RSw is residuals for single width model, RTw is the residual for the two 
width model) for selected peak orders of PQ1. The peak order is indicated by the number in the 
top right. Values larger than 1 indicate an improvement in the goodness of fit for the two width 
model compared to the single width. Dashed line denotes a RSw/RTw of 1.  

 

Description of the Shape Model 

 The simulated scattering was calculated from a model where the base unit was a trapezoid, 
which has the advantage that the Fourier transform can be calculated analytically, avoiding the 
need for a more computationally intensive numerical approach. Figure S2 defines how the 
coordinates are assigned. The trapezoid is asymmetric to allow the stack to reproduce the shark fin 



shape of the lines. The Fourier transform is calculated over the area of the trapezoid (with 
coordinates and slopes defined in Figure S2) which produces Eq S2. Figure S3 shows in detail 
how the model parameters are assigned. A(q) is calculated for each individual trapezoid and 
summed to provide the scattering amplitude for the entire structure. 

 

Figure S2: Definition of coordinate system for derivation of analytical Fourier transform of an 
asymmetric trapezoid, mL is the slope of the left edge and mR is the slope of the right edge.  

 

 

 

 

 

 

 

 

Figure S3: Model image with each free parameter labeled. For the Single Width model W(1,:) = 
W(2,:). W(1,2) is the width of the base of the 2nd trapezoid from the bottom in the first pair of 
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lines. H corresponds to the trapezoid height and S corresponds to the shift in the edge of the 
trapezoid relative to the bottom left point on the lowest trapezoid in the stack. The ratio of W and 
S determines if the trapezoid is symmetric or skewed. 

 

Description of the Monte Carlo Markov Chain (MCMC) model 

The MCMC algorithm searches the local space of the goodness of fit (GF) and generates a 
model population. The variation of the model parameters in the population is reflective of the 
sensitivity of the parameters to the experimental data. The probability of a given model being in 
the population is proportional to its GF (GF is calculated according to Eq S4, where ISim represents 
the simulated intensity and IExp represents the experimental intensity). The algorithm is initialized 
by using the best known fit as the initial condition. Candidate models are generated by making 
small, random changes in each of the model parameters simultaneously. If the GFi+1 < GFi then 
the candidate model is accepted, otherwise an acceptance probability (α) is generated based on the 
relative fit quality of the candidate model compared to the best known model. Eq S3 is used to 
calculate α, where GFB is the goodness of fit of the best known model.(Mosegaard & Sambridge, 
2002) A random number y ∈ [0,1] is then generated and if y < α the candidate model is accepted. 
The step size of the chains were tuned so the probability of accepting a new step was between 0.3 
and 0.4, which has been shown to result in the fastest convergence of the chains.(Mosegaard & 
Tarantola, 1995) Each parameter (H,W,S) was allowed to vary by at least an order of magnitude 
in each direction from the initial position, ensuring that none of the parameters were trapped near 
a limit or in a local minima. Each simulation consisted of 10 chains with 3 million steps. The model 
population developed from the MCMC is then resampled every 100 steps to remove correlations 
between points, for a total population of about 300,000.  Figure S4 shows a correlation plot for the 
key parameters, the line spacings, height and widths. Using this plot it can be shown that most of 
the parameters are completely uncorrelated. A diagonal distribution of points is indicative of 
correlations between two parameters. Mild correlations between the A-B and B-C spacings are 
observed, and also between Width1 and Width2.  
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Figure S4: Correlation plots for A, B and C spacings, Height, Width1 and Width2. 
Diagonal distributions indicate correlations between parameters.  

References 

Mosegaard, K. & Sambridge, M. (2002). Inverse Probl. 18, R29. 

Mosegaard, K. & Tarantola, A. (1995). J. Geophys. Res. 100, 12431–12. 

 

 


