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1 Relative Deviation of a Single Peak

We consider the average and standard deviation for a single Gaussian peak appearing in the signal
I(χ). Without loss of generality, we assume the angular linecut is along [−π,+π) with a single
peak centered at χ = 0:

Ip(χ) = I(0)e−χ
2/2σ2

χ (1)

The average is:

µp = 〈Ip(χ)〉 =

∫ +π
−π I(0)e−χ

2/2σ2
χdχ∫ +π

−π dχ
(2)

=
I(0)σχ

√
2π

2π
(3)

=
I(0)σχ√

2π
(4)

Note that we have made the reasonable assumption that the peak is well-contained within the
integration range (3σχ < π), so that the full Gaussian integral is a good approximation for the
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finite integration. The variance is then:

σ2p =

∫ +π
−π (Ip(χ)− µp)2 dχ∫ +π

−π dχ
(5)

=
1

2π

∫ +π

−π

(
I(0)e−χ

2/2σ2
χ − I(0)σχ√

2π

)2

dχ (6)

=
I(0)2

2π

∫ +π

−π

(
e−2χ

2/2σ2
χ − 2σχ√

2π
e−χ

2/2σ2
χ +

σ2χ
2π

)
dχ (7)

=
I(0)2

2π

[
σχ√

2

√
2π − 2σχ√

2π
σχ
√

2π +
σ2χ
2π

2π

]
(8)

=
I(0)2σχ

2π

[√
π − 2σχ + σχ

]
(9)

σp =
I(0)σχ√

2π

√√
π

σχ
− 1 (10)

2 Relative Deviation of Multiple Peaks

A realistic signal I(χ) of course includes many peaks. We can analyze the relative deviation of this
case also. The intensity is given by:

I(χ) =

Np∑
i=1

I(0)e−(χ−χi)
2/2σ2

χ (11)

The average is simply:

µI = 〈I(χ)〉 =

∫ +π
−π

Np∑
i=1

I(0)e−(χ−χi)
2/2σ2

χdχ∫ +π
−π dχ

(12)

=
I(0)

2π

Np∑
i=1

∫ +π

−π
e−(χ−χi)

2/2σ2
χdχ (13)

=
I(0)Npσχ

√
2π

2π
(14)

=
I(0)Npσχ√

2π
(15)
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The variance is then:

σ2I =

∫ +π
−π (I(χ)− µI)2 dχ∫ +π

−π dχ
(16)

=
1

2π

∫ +π

−π
I(χ)2dχ− µ2I (17)

=
I(0)2

2π

+π∫
−π

 Np∑
i=1

e−(χ−χi)
2/2σ2

χ

2

dχ− µ2I (18)

=
I(0)2

2π

+π∫
−π

 Np∑
i=1

e−2(χ−χi)
2/2σ2

χ +
∑
i 6=j

e−(χ−χi)
2/2σ2

χe−(χ−χj)
2/2σ2

χ

dχ− µ2I (19)

=
I(0)2

2π

Npσχ
√
π +

∑
i 6=j

+π∫
−π

e−(χ−χi)
2/2σ2

χe−(χ−χj)
2/2σ2

χdχ

− µ2I (20)

The remaining integrand can be written as:

exp
(
−(χ− χi)2/2σ2χ − (χ− χj)2/2σ2χ

)
(21)

= exp

(
− 1

2σ2χ

(
(χ− χi)2 + (χ− χj)2

))
(22)

= exp

(
− 1

2σ2χ

(
χ2 − 2χχi + χ2

i + χ2 − 2χχj + χ2
j

))
(23)

= exp

(
−
(

1

σ2χ

)
χ2

)
exp

(
−2

(
−χi + χj

2σ2χ

)
χ

)
exp

(
−
χ2
i + χ2

j

2σ2χ

)
(24)

Note that
∫∞
−∞ e

−ax2e−2bx dx =
√

π
ae

b2

a , so:

σ2I =
I(0)2

2π

Npσχ
√
π +

∑
i 6=j

√
πσ2χe

(χi+χj)
2/4σ2

χe(χ
2
i+χ

2
j )/2σ

2
χ

− µ2I (25)

=
I(0)2σχ

2
√
π

Np +
∑
i 6=j

e(χi+χj)
2/4σ2

χe(χ
2
i+χ

2
j )/2σ

2
χ

− µ2I (26)

The remaining summation includes N2
p −Np terms. If Np is small, then the peaks will tend to not

overlap, and so the summation of cross-peak terms will be negligible. In this case we obtain:

σ2I =
I(0)2σχ

2
√
π

Np − µ2I (27)

=
I(0)2σχ

2
√
π

Np −
I(0)2σ2χ

2π
N2
p (28)

=
I(0)2σ2χN

2
p

2π

( √
π

σχNp
− 1

)
(29)

Which yields:

σR =
σI
µI

=

√ √
π

σχNp
− 1 (30)
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Since Np is small, this scaling matches the expected N
−1/2
p . In the more general case, the summa-

tion includes terms that depend on the peak positions, which in turn depend on the orientation

distribution. For a random orientation distribution, we expect the N
−1/2
p scaling to be maintained,

as observed in the simulation results.

3 Grain size distribution

3.1 Lognormal distribution

The number-averaged distribution of grain sizes for a lognormal distribution can be written:

dN =
1

ξω
√

2π
e−(ln ξ−γ)

2/2ω2
dξ (31)

Where γ and ω are the mean and standard deviation of the logarithm of the distribution. The
number-average of the distribution is:

〈ξ〉N = eγ+
ω2

2 (32)

The standard deviation is:
∆ξN = 〈ξ〉N

√
eω2 − 1 (33)

The area-weighted mean is:

〈ξ〉A = eγ+
5ω2

2 (34)

And the volume-weighted mean is:

〈ξ〉V = eγ+
7ω2

2 (35)

We can write:

ω =

√√√√ln

(
〈ξ〉2N
∆2
ξN

+ 1

)
(36)

γ = ln〈ξ〉N −
ω2

2
(37)

= ln〈ξ〉N −
1

2
ln

(
〈ξ〉2N
∆2
ξ

+ 1

)
(38)

Since 〈ξ〉V = 〈ξ〉Ne3ω
2
, we can also write:

∆ξN

〈ξ〉V
=

√
eω2 − 1

e3ω2 (39)

γ = ln
〈ξ〉V
e3ω2 −

ω2

2
(40)

We use the above relations to construct lognormal distributions that have matched volume-weighted
average by using the parameter ω to vary the width of the distribution, and then computing γ in
order to maintain 〈ξ〉V (Fig. S1).

4



Figure S1: The lognormal distribution, shown for a variety of distribution widths (modulated by
the parameter ω, as indicated in the legend). The parameter γ is adjusted so as to keep the volume-
weighted average (〈ξ〉V ) constant. For ω < 0.3, the distribution is pseudo-Gaussian. For larger ω,
the distribution becomes increasingly skewed.

3.2 Scaling of σR due to grain size

Recall that the metric σR follows the functional form:

σR = cσRN
βσR
g (41)

The prefactor can be expressed in terms of σχ, or in terms of the dimensionless grain size q〈ξ〉V
(which is essentially the number of lattice repeats in the grain, up to a factor 2π) by using the
Scherrer relation 〈ξ〉V = 2πK/σq, which can also be written σχ = 2πK/q〈ξ〉V :

c2σR =
2(
√
π − σχ)

m
√

2πσ2χfχ
(42)

=
2(
√
π − 2πK

q〈ξ〉V )

m
√

2π
(

2πK
q〈ξ〉V

)2
fχ

(43)

=
2(
√
πq〈ξ〉V − 2πK)q〈ξ〉V
m
√

2π (2πK)2 fχ
(44)

=
(q〈ξ〉V − 2

√
πK)q〈ξ〉V

m2
√

2π2K2fχ
(45)

=
1

m2
√

2π2K2fχ
(q〈ξ〉V )2 − 1

m
√

2π3/2Kfχ
q〈ξ〉V (46)

Note that since the first term is considerably larger than the second, this relation can be approxi-
mated by the linear relation:

cσR =
q〈ξ〉V

Kπ
√

2
√

2mfχ

(47)
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The full expression can also be solved via the quadratic equation to give:

q〈ξ〉V = +
m2
√

2π2K2fχ

2m
√

2π3/2Kfχ
± m2

√
2π2K2fχ

2

√√√√( 1

m
√

2π3/2Kfχ

)2

− 4

(
1

m2
√

2π2K2fχ

)(
−c2σR

)
= K

√
π ± m

√
2π2K2fχ

1

√
1

m22π3K2f2χ
+

4c2σR
m2
√

2π2K2fχ
(48)

= K
√
π ±mπ2K2fχ

√(
2

2mfχπ2K2

)[
1

mπfχ
+

4c2σR√
2

]
(49)

= K
√
π ±Kπ

√√√√(mfχ
1

)[
1

mπfχ
+

2
√

2c2σR
1

]
(50)

= K
√
π +K

√
π + 2π2

√
2mfχc2σR (51)

Where we have taken the positive root as the physically meaningful one. Moreover, this expression
can be approximated by the linear expression:

q〈ξ〉V = Kπ

√
2
√

2mfχcσR (52)

3.3 Phenomenological trends for σR due to grain size distribution

In cases where there exists a distribution in grain size, the σR = cσRN
βσR
g becomes modified; in

particular we note that βσR deviates from −1/2. Simulations were performed where the scattering
peak intensities and widths are both affected by grain size: integrated peak intensities were scaled
with grain volume, and peak width was modulated using the Scherrer relation. Figure S2 shows
the results of one such simulation. The scaling of the metrics is modified, owing to the additional
variation which the grain-size distribution introduces. In particular, the power-law exponent (slope
in the log-log graph) of the σR scaling becomes smaller (|βσR | < 1/2). In a given scattering image,
the larger grains will contribute preferentially to the observed intensity fluctuation; owing both to
their larger scattering intensity (due to the larger grain volume), and their higher peak intensity
(owing to their peak sharpness). Overall, as additional grains are added to the scattering volume,
the variation in the signal is thus not averaged as rapidly (because of the additional variation of
the grain-size distribution).
We generated a wide range of simulations, varying the grain size and distribution. We assess
the behavior of cσR and βσR by phenomenologically fitting the variation of these parameters with
(dimensionless) grain size q〈ξ〉V and breadth of the size distribution (quantified by the lognormal
parameter ω). Since we are not enforcing βσR = −1/2, we observe a correspondingly modification
to the behavior of cσR . In particular, for sufficiently broad size distributions, the observed scaling
becomes shallower and cσR deviates substantially from the theoretical behavior already derived (Fig
S3).
The observed trends can be described using phenomenological equations of the form:

βσR = −1

2

(
1− tanh

[(
ω

δβ

)κβ])
(53)

cσR =
q〈ξ〉V

Kπ
√

2
√

2mfχ

(
1− tanh

[(
ω

δc

)κc])
(54)
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Figure S2: Scaling behavior of the metrics as a function of the number of grains, Ng, for a system
with a lognormal distribution of grain sizes (simulations shown are for q〈ξ〉V = 261, ω = 0.64 and
B = 0.001). The power-law scaling is modified, compared to the case where there is no grain-size
distribution; in particular the exponent of the σR scaling becomes shallower (|βσR | < 1/2).

Figure S3: Variation of the σR power-law prefactor for different widths of the grain size distribution
(legend denotes ω). In this data, the grain size was allowed to affect both the peak heights and
peak widths (through the Scherrer relation) in the scattering data (i.e. the grains are sufficiently
small that peaks widths are not dominated by instrumental resolution).
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Figure S4: Variation of the σR power-law prefactor for different widths of the grain size distribution
(legend denotes ω), in the case where the grain sizes are sufficiently large that they no longer affect
the observed peak width. The left panel is the values of cσR obtained when fitting the simulation
result while enforcing β = −0.5, whereas the right panel shows the values obtained when allowing
β to vary freely in the fit.

where tanh is the hyperbolic tangent function. These equations can be used to fit the simulation
data, where we observe that the phenomenological fit parameters are roughly δ ≈ 1 and κ ≈ 2. In
fact, the entire set of simulation curves can be fit in a concerted fashion, which yields δβ = 1.02,
κβ = 2.32, δc = 0.83, and κc = 2.30. This single set of parameters adequately describes the full
set of 221 simulations performed (see main text). However, the fit is purely phenomenological,
and we observe additional, more subtle, trends in the data. E.g. βσR appears to have a weak
positive dependence on q〈ξ〉V , and the cσR similarly have some additional weak dependence on ω,
not accounted for in the master curves presented here. In principle, this higher-order influence
could be accounted for by allowing the phenomenological parameters to vary between conditions;
i.e. allow δβ(q〈ξ〉V ) and so on. Nevertheless, this simple phenomenological model is sufficient to
use the simulation results as a calibration curve, for the interpretation of experimental data. We
note also that the deviations from ideal behavior only become relevant for very broad grain-size
distributions.

3.4 Phenomenological trends for σR for fixed peak widths

The above results were obtained when both peak intensities and widths were affected by grain size.
In cases where the average grain size is large, the intrinsic peak width will be much smaller than
the instrumental peak width. We now therefore consider a set of simulations wherein only the peak
heights (and not the peak widths) are influenced by the grain size (i.e. valid in the limit where
instrumental broadening always dominates). We again observe the power-law prefactor varies from
its idealized value (Fig. S4). However, by allowing β to vary during the fit, we can capture the
portion of the signal variability arising from the distribution of grain-sizes. We observe that the
same phenomenological relations already described can be used to fit these trends. However, the
κ exponents are considerably larger, which in fact makes the analysis procedure less sensitive to
grain-size distribution when the distribution is relatively narrow. In other words, the proposed
analysis should be robust for realistic grain-size distributions, when the grains are so large that
the peak widths are instrumental-dominated. This comparative insensitivity likely arises from the
suppression of one additional source of variation (namely, variation of the peak width). On the other
hand, we note that the deviation from the proposed phenomenology appears to be more extreme in
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Figure S5: Variation of the σR power-law fitting variables. The left panels show the variation as a
function of grain sizes (q〈ξ〉V ), for different grain size distributions (ω given in legend). The right
panels show the same data plotted versus grain size distribution (q〈ξ〉V given in legend). The solid
lines are concerted phenomenological fits to the entire simulation dataset, which yields δβ = 0.95,
κβ = 3.65, δc = 1.03, and κc = 6.72..
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this case of fixed peak width. With respect to using the simulation results as a calibration curve,
one can simply perform a phenomenological fit on the relevant subset of the data.

3.5 Scaling of ψ due to grain size

The preceding analysis can of course be revisited for the other metrics. Similarly to the analysis

for σR, we know that the metric ψ follows: ψ = cψN
βψ
g . Converting our relation for the prefactor

to be in terms of the dimensionless grain size:

cψ = 4σ3/2χ

√
m

2

√
2πfχ (55)

= 4

(
2πK

q〈ξ〉V

)3/2√m

2

√
2πfχ (56)

= 8π3/2
K3/2

(q〈ξ〉V )3/2

√
m
√

2πfχ (57)

q〈ξ〉V =

(
8π3/2

K3/2

cψ

√
m
√

2πfχ

)2/3

(58)

= 4π
K

c
2/3
ψ

(
m
√

2πfχ

)1/3
(59)
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