
Supplementary information for “Angle calculations for an

area detector on a 2-axis arm: application to powder

diffraction”

1 Experimental details

The powder sample comprised around 2 mg of γ-Fe2O3 nanoparticles that were supported by an
Ir thin film on a Si substrate. The incident beam (tuned to 30 eV below the Fe K absorption edge)
struck the sample in grazing incidence, and the scattered X-rays exited the sample chamber via
a rectangular (Kapton) window. Because the dimensions of the window limited the (measurable)
scattered beam directions, the area detector was moved to (ν,δ) = (24◦,20◦), where (roughly)
maximum fractions of two strong diffraction cones [those due to the (220) and (311) reflections of
the cubic γ-Fe2O3 phase] were captured. The distance between the sample and detector was D =
232.4 mm. With the detector at (ν,δ) = (0,0), approximately half of this distance was helium and
the remainder was air (post chamber).

The detector was a MAR165 charge coupled device (CCD). The pixel size was calibrated at
77.3 µm × 77.3 µm. Although the MAR165 has a circular active area, it outputs a square, N ×N
(pixels) data matrix (in the high resolution mode, N = 2048). The matrix elements in the corner
regions, that lie outside the active area, each contain (by definition) zero counts. Only matrix
elements within the detector’s active area are plotted in Fig. 2.

2 Angle calculations and 2-D to 1-D pattern conversion in
MATLAB

The position vectors corresponding to all CCD pixels–and (corner region) ‘pseudo pixels’–may be
calculated in the form of an N ×N × 3 array, R, by evaluating equation (4) as follows:

>> for index = 1:3
R(:,:,index) = ones(N,1)*((([1:N] + 0.5 - jbc)*xpix)*Xd(index)) +...

((([1:N]’ + 0.5 - ibc)*ypix)*Yd(index))*ones(1,N) -...
ones(N,N)*(D*Zd(index));

end
where Xd, Yd and Zd are the vectors x̂′

d, ŷ′
d and ẑ′d defined by equations (2) and (3). The

magnitudes of the position vectors may then be calculated in the form of an N ×N matrix:
>> Rmag = sqrt(R(:,:,1).ˆ2 + R(:,:,2).ˆ2 + R(:,:,3).ˆ2);

An N×N×2 array, K, containing the 1st and 2nd components of the outgoing scattering vector
directions, defined in equation (5), may then be computed by:

>> for index = 1:2; K(:,:,index) = R(:,:,index)./Rmag; end
from which matrices of 2θ and ψ values (in degrees) corresponding to the CCD pixels (and pseudo
pixels) can be calculated by equating the 1st and 2nd vector components corresponding to equations
(1) and (5):

>> TTH = acos(K(:,:,2)) * (180/pi);
>> PSI = acos(K(:,:,1)./sin(TTH)) * (180/pi);

At this point, a plot of the transformed 2-D diffraction pattern [as in Fig. 2(b)] can be made
using the surf function, after reading in the MAR165 CCD data file using the importdata
function, and ‘flipping’ this matrix vertically in order to be make it consistent with the chosen
detector coordinate system of Fig. 1 (in which yd points vertically upwards for δ = 0) together
with equation (4), where the row index i increases from bottom to top:

>> COUNTS = importdata(’datafile.mccd’);
>> COUNTS = flipud(COUNTS);
>> surf(TTH,PSI,COUNTS); view(2); shading interp;

The 2θ and ψ values in the matrices TTH and PSI are ordered according to detector pixel
position, just as the count values are ordered in the 2-D diffraction data matrix, COUNTS. To allow
a straightforward extraction of a 1-D (integrated) pattern, the COUNTS matrix should be converted
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to a matrix of count values ordered according to {2θ,ψ}, e.g. with rows corresponding to constant
ψ and columns corresponding to constant 2θ. This may be achieved by a 2-D interpolation (of
the set of ‘points’ with values COUNTS located at the positions in the {2θ,ψ} plane given by TTH
and PSI) onto a uniform rectangular grid of 2θ and ψ values, the corners of which are defined by
the maximum and minimum values in the matrices TTH and PSI. The grid may be defined by the
vectors TTH ord and PSI ord calculated as follows:

>> max tth = max(TTH(:)); min tth = min(TTH(:));
>> max psi = max(PSI(:)); min psi = min(PSI(:));
>> step tth = (max tth - min tth)/(N - 1);
>> step psi = (max psi - min psi)/(N - 1);
>> TTH ord = min tth:step tth:max tth;
>> PSI ord = [min psi:step psi:max psi]’;

The reordered diffraction data matrix can then be (2-dimensionally) interpolated using the griddata
function:

>> COUNTS ord = griddata(TTH,PSI,COUNTS,TTH ord,PSI ord);
In general, the rectangular grid contains points that lie outside the region of the {2θ,ψ} plane

spanned by the matrices TTH and PSI, the latter region being generally non-rectangular, as indi-
cated by Fig. 2(b). The attempted interpolation (via the griddata command) onto such points
produces NaN (not a number) entries in the reordered matrix, COUNTS ord. To set such NaN
values to zero, so that a 1-D diffraction patterns can be extracted from COUNTS ord by summing
count values of the same 2θ (same column), the following command may be issued:

>> COUNTS ord(isnan(COUNTS ord)) = 0;
Incidentally, the following surf plot of the reordered matrix will be (as expected) identical to

the (above) surf plot of the matrices TTH, PSI and COUNTS, but for the former plot’s rectangular
shape (with the zeros at its edge regions that lie outside the {2θ,ψ} region spanned by the detector):

>> surf(TTH ord,PSI ord,COUNTS ord); view(2); shading interp;
Finally, the reduction of any selected region of the reordered matrix to a 1-D (integrated)

pattern may be carried out as follows:
>> c1 = 1 + round((tth1 - min tth)/step tth);
>> c2 = 1 + round((tth2 - max tth)/step tth);
>> r1 = 1 + round((psi1 - min tth)/step psi);
>> r2 = 1 + round((psi2 - max tth)/step psi);
>> INTEG COUNTS = sum(COUNTS ord(r1:r2,c1:c2),1);
>> TTH VALUES = TTH ord(c1:c2);

where the maximum and minimum 2θ and ψ values that define the selected region are given by the
values of the variables tth1, tth2, psi1 and psi2, and correspond to column and row indices
in COUNTS ord denoted by c1, c2, r1 and r2. The highlighted (by the dashed-line rectangle)
region of Fig. 2(b) corresponds to (tth1,tth2,psi1,psi2) = (30◦,44.5◦,40◦,50◦).

3 Detector non-orthogonality

An anonymous referee is gratefully acknowledged for raising the question as to how the calcula-
tion procedure would be modified to account for detector non-orthogonality (with respect to the
incident beam axis). In Hammersley et al.’s paper (see reference in main article) the detector
non-orthogonality is parameterized by two angles, ϕ and β, which are referred to in the FIT2D
package (as well as in other packages, such as GSAS-II) as the angle of detector tilt in plane and
the rotation angle of tilting plane, respectively. The former is the angle between the normal to the
detector face and the incident beam axis [when, for the present purposes, (ν,δ) = (0,0)], whereas
the latter angle (β) can be understood as a rotation about that axis. That is, starting from the
ideally orthogonal detector in Fig. 1(a), the detector is rotated anticlockwise about its yd axis
(which is parallel to the x axis of the laboratory frame) by the angle ϕ, then subsequently rotated
clockwise about the y (laboratory frame) axis by the angle β. The detector is then rotated about
its normal in a clockwise manner until the xd and yd axes lie in horizontal and vertical planes,
respectively. The rotations ϕ followed by β modify the direction of the detector normal (expressed
in the laboratory coordinate system) from the unit vector ẑd in equation (2) to the following (unit)
vector:

ẑd =

cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 0
−1
0

 =

 sinϕ sinβ
− cosϕ

− sinϕ cosβ


The following schematic illustrates the final (non-orthogonal) detector orientation, where the size
of the angle ϕ is exaggerated for clarity (typical values of ϕ may vary up to only several decimals
of a degree):
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Another way to produce the same (general) non-orthogonal orientation as that shown in the
above schematic is (starting from the ideally orthogonal detector) to first rotate clockwise about
xd (anticlockwise about z) by some angle, let us call it αδ, and then anticlockwise about an axis
parallel to x that passes through the origin of the detector coordinate system, by an angle, let us
call it αν . The resulting direction of the detector normal is then be expressed as:

ẑd =

1 0 0
0 cosαν − sinαν

0 sinαν cosαν

cosαδ − sinαδ 0
sinαδ cosαδ 0
0 0 1

 0
−1
0

 =

 sinαδ

− cosαν cosαδ

sinαν sinαδ


By equating similar components of the two different parameterizations [i.e. the (ϕ,β) one

and the (αν ,αδ) one] for the detector normal direction, the angles corresponding to the latter
parameterization may be determined given those from the former. This would be the case of
a detector whose non-orthogonality were initially calibrated using FIT2D (or another package
adopting a similar parameterization, such as GSAS-II), using the 2-D diffraction pattern acquired
from some calibration sample (Si, LaB6, . . . ) with the detector at (ν,δ) = (0,0). Subsequently,
once the angles αν and αδ were determined, the x̂d and ŷd vectors [modified from the ideal case
in equation (2)] are determined as:

x̂d =

1 0 0
0 cosαν − sinαν

0 sinαν cosαν

 0
0
−1

 =

 0
sinαν

− cosαν


and

ŷd =

1 0 0
0 cosαν − sinαν

0 sinαν cosαν

cosαδ − sinαδ 0
sinαδ cosαδ 0
0 0 1

1
0
0

 =

 cosαδ

cosαν sinαδ

sinαν sinαδ


The calculation procedure presented in the main article would thus be modified to account

for any known (previously calibrated) detector non-orthogonality by applying the transform in
equation (3) to each of the above modified vectors, x̂d, ŷd and ẑd, rather than to the versions of
these vectors given in equation (2).

A different approach would be to treat αν and αδ as unknowns, together with the beam center
coordinates ibc and jbc in equation (4), and use a modified calculation procedure to test detector
non-orthogonality at some alignment of (ν,δ) ̸= (0,0). The approach would be as follows. A
calibration powder sample would be measured with the detector displaced in ν and δ. An attempt
to fit the locus of points corresponding to a given diffraction ring (of known 2θ) in the 2-D pattern
would then be made using equations (1) and (3)–(5), along with the above modified forms of the
vectors, x̂d, ŷd and ẑd. That is, for a series of ψ values (but a constant 2θ) similar components
of the vectors in equations (1) and (5) would be equated to each other in order to determine (this
time) the components of the position vectors in equation (5) (rather than the angles 2θ and ψ).
The values of the ‘fitting parameters’ (αν ,αδ,ibc,jbc) would be adjusted until the resultant (series
of) values of the indices i and j, from equation (4), matched the locus of points comprising the
diffraction ring.

Such a method could find an application, e.g., in single-crystal studies using an area detector
on a pseudo six-circle diffractometer. Namely, the powder (calibration) sample would be mounted
before or after the single-crystal study, to check the detector non-orthogonality at ν and δ values
relevant to that study. The same calibrant would then be measured with the detector at (ν,δ) =
(0,0), and the detector non-orthogonality would this time be determined using existing software
(e.g. FIT2D). A comparison of the angle parameters (that parameterize the non-orthogonality)
determined by each method would constitute a check of the robustness of the detector mount, i.e.
a check of the possibility that small tilts were introduced upon moving the detector in ν and δ.
[Of course, it should be confirmed beforehand that the two methods agree–i.e. give consistent
ẑd directions– when applied to the same calibration pattern acquired at (ν,δ) = (0,0) or at small
values of these angles such that the incident axis still intercepted close to the center of the detector
face.]
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