Table-1 Structural parameters and R-factors obtained for Amm2 and P4mm space group after Rietveld refinement.

Space group	T (K)	Thermal Parameter		Atomic positions (x,y,z)				R-factors		
		$\mathrm{Ba}^{2+} / \mathrm{Ca}^{2+}$	$Z r^{4+} / T i^{4+}$	$\mathrm{Ba}^{2+} / \mathrm{Ca}^{2+}$	$\mathrm{Zr}^{4+} / \mathrm{i}^{4+}$	O1	O2	$\mathrm{R}_{\mathrm{p}} \quad \mathrm{R}_{\mathrm{wp}}$	R_{B}	χ^{2}
Amm2	253	1.26	0.51	(0,0,0.022)	(0,0,0.54)	(0,0,0.45)	(0.5,0.24,0.29)	5.347 .78	2.93	1.39
	263	1.27	0.48	(0,0,0.018)	(0,0,0.54)	(0,0,0.44)	(0.5,0.23, 0.28)	5.447 .79	2.94	1.44
	273	1.29	0.54	(0,0,0.028)	(0,0,0.53)	(0,0,0.46)	(0.5,0.21,0.28)	5.047 .60	2.51	1.23
P4mm	318	1.26	0.57	(0,0,0.06)	(0.5,0.5,0.58)	(0.5,0.5,0.01)	(0,0.5,0.49)	5.117 .28	2.73	1.31
	323	1.86	0.68	(0,0,0.08)	(0.5,0.5,0.57)	(0.5,0.5,0.003)	(0,0.5,0.51)	5.217 .58	2.83	1.37
	333	1.92	0.78	(0,0,0.09)	(0.5,0.5,0.59)	(0.5,0.5,-0.04)	(0,0.5,0.52)	4.946 .98	2.33	1.29

Table-2 Lattice parameters and volume obtained for $A m m 2$ and $P 4 m m$ space group after Rietveld refinement.

T (K)	Amm2			Pseudo monoclinic with $b_{m}=c_{m}$			P4mm		Volume of primitive unit cell
	a	b	c	a_{m}	c_{m}	γ		c_{t}	
253	4.069 A	5.791 A	5.783 A	4.069 Å	4.092 A	90.079°	---	---	$68.13 \AA^{3}$
263	4.070 A	$5.790 \AA$	$5.783 \AA$	$4.070 \AA$	$4.092 \AA$	90.069°	---	---	$68.14 \AA$
273	4.072 A	$5.788 \AA$	$5.782 \AA$	$4.072 \AA$	$4.091 \AA$	90.049°	---	---	$68.15 \AA^{3}$
318	---	---	---	---	---	---	$4.071 \AA$	$4.100 \AA$	$67.94 \AA^{3}$
323	---	---	---	---	---	---	$4.072 \AA$	$4.101 \AA$	$67.99 \AA$
333	---	---	---	---	---	---	$4.073 \AA$	$4.101 \AA$	$68.03 \AA$

Table-3 Lattice parameters, unit cell volume, R-factors and wt \% of tetragonal (P 4 mm) phase obtained for mixed Amm2+P4mm space group

T (K)	Lattice parameter ($\mathbf{(A)}$								Avg. volume of primitive unit cell ($\AA^{\mathbf{3}}$)	Wt \% of tetragonal phase	R-factors			
	Amm2			$\underline{\text { Pseudo monoclinic with } b_{m}=c_{m}}$			P4mm				R_{p}	R_{wp}	R_{B}	χ^{2}
	a	b	c	a_{m}	c_{m}	γ	a_{t}	c_{t}						
293	4.066	5.797	5.777	4.066	4.092	90.19°	4.077	4.099	68.096	27	4.98	6.83	3.13(O), 3.40(T)	1.12
298	4.063	5.792	5.776	4.063	4.089	90.16°	4.074	4.102	68.004	46	5.18	7.23	3.63(O), 3.93(T)	1.20
303	4.062	5.788	5.774	4.062	4.087	90.13°	4.070	4.103	67.914	58	5.08	7.20	3.65(O), 4.00(T)	1.13
308	4.070	5.793	5.784	4.070	4.093	90.08°	4.072	4.104	68.097	63	5.58	8.10	4.16(O), 4.03(T)	1.45
313	4.069	5.788	5.778	4.069	4.089	90.09°	4.072	4.105	68.068	76	5.11	7.03	$3.73(\mathrm{O}), 3.43(\mathrm{~T})$	1.33

Table-4 Structural parameters obtained for mixed Amm2 $+P 4 m m$ space group after Rietveld refinement

T (K)	Thermal Parameter Amm2 P4mm		$\begin{gathered} \hline \text { Atomic positions (x,y,z) } \\ \text { (Amm2) } \\ \text { (P4mm) } \\ \hline \end{gathered}$			
	$\mathrm{Ba}^{2+} / \mathrm{Ca}^{2+}$	$\mathrm{Zr}^{4+} / \mathrm{Ti}^{4+}$	$\mathrm{Ba}^{2+} / \mathrm{Ca}^{2+}$	$\mathrm{Zr}^{4+} / \mathrm{i}^{4+}$	O1	O2
293	$\begin{aligned} & 1.43 \\ & 1.37 \end{aligned}$	$\begin{aligned} & \hline 0.43 \\ & 0.51 \end{aligned}$	$\begin{aligned} & \hline(0,0,0.018) \\ & (0,0,0.024) \end{aligned}$	$\begin{gathered} (0,0,0.53) \\ (0.5,0.5,0.55) \end{gathered}$	$\begin{gathered} \hline(0,0,0.44) \\ (0.5,0.5,0.01) \end{gathered}$	$\begin{gathered} (0.5,0.24,0.30) \\ (0,0.5,0.485) \end{gathered}$
298	$\begin{array}{r} 1.70 \\ 1.59 \\ \hline \end{array}$	$\begin{aligned} & 0.52 \\ & 0.44 \end{aligned}$	$\begin{aligned} & (0,0,0.013) \\ & (0,0,0.014) \end{aligned}$	$\begin{gathered} (0,0,0.54) \\ (0.5,0.5,0.55 \end{gathered}$	$\begin{gathered} (0,0,0.44) \\ (0.5,0.5,0.008) \end{gathered}$	$\begin{gathered} (0.5,0.23,0.30) \\ (0,0.5,0.478) \end{gathered}$
303	$\begin{aligned} & 1.49 \\ & 1.58 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.46 \\ & 0.51 \\ & \hline \end{aligned}$	$\begin{gathered} \hline(0,0,0.009) \\ (0,0,-0.04) \\ \hline \end{gathered}$	$\begin{gathered} (0,0,0.52) \\ (0.5,0.5,0.56) \end{gathered}$	$\begin{gathered} (0,0,0.42) \\ (0.5,0.5,0.010) \end{gathered}$	$\begin{aligned} & (0,0.18,0.31) \\ & (0,0.5,0.531) \end{aligned}$
308	$\begin{aligned} & 1.44 \\ & 1.39 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.51 \\ & \hline \end{aligned}$	$\begin{aligned} & (0,0,0.001) \\ & (0,0,0.053) \\ & \hline \end{aligned}$	$\begin{gathered} (0,0,0.53) \\ (0.5,0.5,0.57) \\ \hline \end{gathered}$	$\begin{gathered} (0,0,0.43) \\ (0.5,0.5,0.007) \end{gathered}$	$\begin{array}{r} (0,0.25,0.31) \\ (0,0.5,0.514) \\ \hline \end{array}$
313	$\begin{aligned} & 1.76 \\ & 1.45 \end{aligned}$	$\begin{aligned} & \hline 0.57 \\ & 0.49 \end{aligned}$	$\begin{gathered} (0,0,-0.022) \\ (0,0,0.053) \end{gathered}$	$\begin{gathered} (0,0,0.49) \\ (0.5,0.5,0.56) \end{gathered}$	$\begin{gathered} (0,0,0.43) \\ (0.5,0.5,0.025) \end{gathered}$	$\begin{aligned} & (0,0.21,0.33) \\ & (0,0.5,0.497) \end{aligned}$

