
A Method for enumeration of powder auto-indexing
solutions in Conograph

In the flowcharts of this section, every entry of an array Λobs := ⟨⟨qi[0], qi[1]⟩ : 1 ≤ i ≤
Npeak⟩ is a pair of a q-value qi[0] and its estimated error qi[1] = Err[qi[0]] of a peak. By
using the powder auto-indexing method introduced here, the parameter of a lattice is

provided as a metric tensor with entries 1
4

∑Npeak

i=1 ciqi[0] (ci ∈ Z), i.e., linear sums of
the q-values in Λobs.

At various stages of powder auto-indexing, the propagated errors of the linear sums
of q-values are useful for making statistical judgments and strengthening the algorithm

against observational errors. In order to simplify the notation, a formal sum
∑Npeak

i=1 ciqi
of the elements of Λobs is utilized in the flowcharts, and assumed to be equipped with
the following functions getTerms, Val, Err and the less-than relation <:

getTerms
(∑Npeak

i=1 ciqi

)
:= {qi : 1 ≤ i ≤ Npeak, ci ̸= 0}, (A.1)

Val
(∑Npeak

i=1 ciqi

)
:=

Npeak∑
i=1

ciqi[0], (A.2)

Err
(∑Npeak

i=1 ciqi

)
:=

Npeak∑
i=1

c2i (qi[1])
2

1/2

, (A.3)

Npeak∑
i=1

aiqi <

Npeak∑
i=1

biqi ⇔
def

Val
(∑Npeak

i=1 aiqi

)
< Val

(∑Npeak

i=1 biqi

)
. (A.4)

If Val and Err are called with the argument
∑Npeak

i=1 ciqi, the value and propagated

error of
∑Npeak

i=1 ciqi[0] are returned, respectively.

A.1 Enumeration of powder indexing solutions

The algorithm of Table 1 enumerates powder indexing solutions in the array Ans. Al-
though 3 × 3 metric tensors are constructed only from elements of Λobs satisfying the
equation 3|l∗1|

2
+ |l∗1 + 2l∗2|

2
= 3|l∗2|

2
+ |2l∗1 + l∗2|

2
in Oishi-Tomiyasu (2013a), Ito’s equa-

tion is also utilized in Table 1, considering the cases in which the powder diffraction
pattern contains only a small number of peaks.

Steps (1), (2) of Table 1 are based on the following assumptions respectively:

(H1) If qr, qs, qt, qu ∈ Λobs satisfy 2(qr + qs) = qt + qu, then there exist l∗1, l
∗
2 ∈ L∗ such

that qr = |l∗1|
2
, qs = |l∗2|

2
, qt = |l∗1 + l∗2|

2
, qu = |l∗1 − l∗2|

2
.

(H2) If qr, qs, qt, qu ∈ Λobs satisfy 3qr + qt = 3qs + qu, then there exist l∗1, l
∗
2 ∈ L∗ such

that qr = |l∗1|
2
, qs = |l∗2|

2
, qt = |l∗1 + 2l∗2|

2
, qu = |2l∗1 + l∗2|

2
.

In both quick and regular searches, the computation time of the procedure in Table 1
is roughly proportional to N2

zone, where Nzone is the size of A2 immediately after Step
(2). This estimate is derived as follows: Steps (1)–(3) are much less time-consuming
than Step (4), hence may be ignored. The size of A3 in Step (3) is approximately 4Nzone.
When Npeak is the size of Λobs, the average number of ⟨R1, R2, R3, R4⟩ ∈ A3 satisfying
(a) or (b) with regard to fixed ⟨Q1, Q2, Q3, Q4⟩ ∈ A3 is approximated with 4Nzone/Npeak.
Therefore, the number of combinations of ⟨Q1, Q2, Q3, Q4⟩, ⟨R1, R2, R3, R4⟩ ∈ A3 and
qk ∈ Λobs is roughly equal to 4Nzone · (4Nzone/Npeak) · Npeak = 16N2

zone. Hence, the
time is proportional to N2

zone.
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Table 1: Enumeration algorithm of powder indexing solutions.
void enumerate3DLattices(Λobs, c,MinDet,MaxDet, Nsol, Ans)

(Input) Λobs : array of Npeak pairs ⟨qi[0], qi[1]⟩ of a q-value qi[0] and its
approximate error qi[1],

c > 0 : parameter setting the error tolerance level,
MinDet : lower threshold for determinants of matrices in Ans,
MaxDet : upper threshold for determinants of matrices in Ans,
Nsol : upper threshold for number of entries in Ans.

(Output) Ans : array of 3× 3 metric tensors.

(1) By the method in Table 2, enumerate qr, qs, qt, qu of Λobs satisfying 2(qr + qs) =
qt + qu and insert ⟨{qr, qs}, {qt, qu}⟩ in A2. (Here, A2 is an array of four formal
sums.)

(2) Enumerate qr, qs, qt, qu of Λobs satisfying 3qr+qt = 3qs+qu. This is done by a method
similar to that in Table 2. Using the new formal sum q−1 := qs+qu−2qr

2 = qr+qt−2qs
2 ,

two sets of q-values satisfying Ito’s equation are generated:

2(q−1 + qr) = qs + qu, 2(q−1 + qs) = qr + qt. (A.5)

Check whether A2 contains ⟨{qw, qr}, {qs, qu}⟩ or ⟨{qw, qs}, {qr, qt}⟩ for some 1 ≤
w ≤ Npeak. If not, this suggests that q−1 is the q-value of a diffraction peak
undetected by peak search. Insert ⟨{q−1, qr}, {qs, qu}⟩ and ⟨{q−1, qs}, {qr, qt}⟩ into
A2.

(3) For each entry ⟨{Q1, Q2}, {Q3, Q4}⟩ of A2, insert the following into a new array A3:

⟨Q1, Q2, Q3, Q4⟩, ⟨Q1, Q2, Q4, Q3⟩, ⟨Q2, Q1, Q3, Q4⟩, ⟨Q2, Q1, Q4, Q3⟩. (A.6)

(4) For each ⟨Q1, Q2, Q3, Q4⟩ in A3, search for ⟨R1, R2, R3, R4⟩ ∈ A3 satisfying either
of the following:

(a) Q1 = R1 ∈ Λobs.

(b) Q1, R1 /∈ Λobs and |Val(Q1 −R1)| ≤ cErr(Q1 −R1).

In addition, for every qk ∈ Λobs, assume that there exist l∗1, l
∗
2, l

∗
3 satisfying

Q1 ≈ R1 = |l∗1|
2
, Q2 = |l∗2|

2
, Q3 = |l∗1 + l∗2|

2
,

R2 = |l∗3|
2
, R3 = |l∗1 + l∗3|

2
, qk = |l∗1 + l∗2 + l∗3|

2
. (A.7)

Then, the metric tensor S := (l∗i · l∗j )1≤i,j≤3 is obtained as the following 3 × 3
symmetric matrix: Q1

Q3−Q1−Q2

2
R3−Q1−R2

2
Q3−Q1−Q2

2 Q2
Q1−Q3−R3+qk

2
R3−Q1−R3

2
Q1−Q3−R2+qk

2 R2

 . (A.8)

The values and propagated errors of the entries are computed using the functions
Val and Err. If MinDet ≤ detS ≤ MaxDet holds, insert S into Ans in ascending
order of detS.a If the size of Ans exceeds Nsol, remove the last entry of Ans.

aIn a regular search, this is replaced by insertion of S into Ans in descending order of the figure of
merit proposed in Wu (1988).
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Table 2: Enumeration algorithm of four q-values satisfying Ito’s equation.
void enumerateItoEquations(Λobs, c, Ans)

(Input) Λobs, c : the same as in Table 1.
(Output) Ans : array of a sequence ⟨{qr, qs}, {qt, qu}⟩, where qr, qs, qt, qu are

elements of Λobs satisfying
|Val(2qr + 2qs − qt − qu)| ≤ c min{2Err(qr + qs),Err(qt + qu)},

(Ito’s equation)(
qt[0]−qr[0]−qs[0]

2

)2

,
(

qu[0]−qr[0]−qs[0]
2

)2

≤ qr[0]qs[0].

(positive definiteness)

1: Set a sorted sequence S := ⟨qi + qj : 1 ≤ i ≤ j ≤ Npeak⟩ of formal sums.
2: for i := 1 to 1

2Npeak(Npeak + 1) do
3: Let 1 ≤ Jmin, Jmax ≤ Npeak be integers satisfying
4: Jmin ≤ j ≤ Jmax ⇐⇒ |Val(2S[i]− S[j])| ≤ 2cErr(S[i]).
5: for j := Jmin to Jmax do
6: if |Val(2S[i]− S[j])| ≤ cErr(S[j]) then
7: {qr, qs} := getTerms(S[i]),
8: {qt, qu} := getTerms(S[j]).
9: Insert ⟨{qr, qs}, {qt, qu}⟩ in Ans,

if qr, qs, qt, qu satisfy the condition for positive definiteness.
10: end if
11: end for
12: end for

A.2 Speed-up of the enumeration method using topographs

As described in Section A.1, the computation time of Table 1 is proportional to the
square of the size Nzone of A2 immediately after Step (2). Thus, an effective way to
speed up the algorithm is to reduce the size of A2.

Every entry ⟨{R1, R2}, {R3, R4}⟩ of A2 consists of four formal sums satisfying Ito’s
equation 2(R1 + R2) = R3 + R4, therefore corresponds to an edge of a topograph as
in Figure 1. (See Oishi-Tomiyasu (2013a) for more detailed explanations about to-
pographs.)

Figure 1: The edge of a topograph corresponding to Ito’s equation 2(R1+R2) = R3+R4.

In Oishi-Tomiyasu (2013a), a figure of merit for the entries of A2 (that is, zones)
was defined as the size of the graph T formed from entries of A2. Table 3 presents the
detailed algorithm to expand T starting from ⟨{R1, R2}, {R3, R4}⟩.

In Table 3, the graph in Figure 1 is expanded to only one side. In order to obtain
the whole T and compute the figure of merit of e := ⟨{R1, R2}, {R3, R4}⟩ ∈ A2, it
is necessary to call the recursive procedure twice with ẽ := ⟨{R1, R2}, R3, R4⟩ and
⟨{R1, R2}, R4, R3⟩, and connect the two output graph as in Figure 3. The figure of
merit C(e) is then computed as the number of q-values in Λobs that appear in T . As
explained in Oishi-Tomiyasu (2013a), e with larger C(e) should be given priority among
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Table 3: Recursive procedure to form a graph from ⟨{R1, R2}, {R3, R4}⟩ and entries of
A2.

void expandSubtopograph(A2, ẽ, Ã2, T )
(Input) Λobs : the same as in Table 1,

A2 : array of four formal sums ⟨{Q1, Q2}, {Q3, Q4}⟩ assumed that
every entry satisfies
Val(2Q1+2Q2−Q3−Q4) ≤ c min{2Err(Q1+Q2),Err(Q3+Q4)}
for some fixed constant c. Furthermore, it is assumed that Q3,
Q4, and at least one of Q1, Q2 belong to Λobs (i.e., there is a
q ∈ Λobs such that Qi = q).

ẽ : supposed to equal ⟨{R1, R2}, R3, R4⟩.
(Output) Ã2 : array containing entries of A2.

T : grapha composed of edges corresponding to ⟨{Q1, Q2}, {Q3, Q4}⟩
in Ã2.

1: For (i, j) = (1, 2), (2, 1), let Sij be the set defined by

2 Sij :=

{{
⟨{Ri, R4}, Rj , q⟩ ∈ A2 : q ∈ Λobs

}
if Rj ∈ Λobs,

∅ otherwise.

3: T12 := ∅. A12 := ∅. T21 := ∅. A21 := ∅.
4: for i = 1 to 2 do
5: Take j = 1, 2 such that j ̸= i.
6: for ẽ2 ∈ Sij do

7: Call expandSubtopograph(A2, ẽ2, Ãij , T̃ij).

8: if |Aij | <
∣∣∣Ãij

∣∣∣b then

9: Tij := T̃ij .

10: Aij := Ãij .
11: end if
12: end for
13: end for

14: Set Ã2 := {⟨{R1, R2}, {R3, R4}⟩} ∪A12 ∪A21.
15: Construct T by unifying T12, T21 and the subgraph corresponding to

⟨{R1, R2}, {R3, R4}⟩, as shown in Figure 2.

aIn the actual algorithm, the construction and the output of the graph T can be omitted, because
the figure of merit for entries of A2 is defined only from Ã2.

bFor any subset Ã2 of A2, the number of q-values in Λobs that appear in some entry of Ã2 is denoted

by
∣∣∣Ã2

∣∣∣. (The Ãij and T̃ij with larger
∣∣∣Ãij

∣∣∣ is given priority.)

Figure 2: Extension of a topograph (1/2).
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Figure 3: Extension of a topograph (2/2).

the entries of A2.
In order to use C(e) as a sorting criterion for zones, the following are inserted between

Steps (2) and (3) of Table 1:

(2i) For each e := ⟨{R1, R2}, {R3, R4}⟩ in A2, compute C(e) by calling the procedure
in Table 3.

(2ii) Sort A2 in descending order of C(e). For e1, e2 ∈ A2 satisfying C(e1) = C(e2),
the sorting is done according to e1 < e2 ⇐⇒

def
detS(e1) < detS(e2), where S(e) is

the following 2× 2 metric tensor defined for e := ⟨{R1, R2}, {R3, R4}⟩ ∈ A2:

S(e) :=

(
Val(R1)

1
2Val(R3 −R1 −R2)

1
2Val(R3 −R1 −R2) Val(R2)

)
.

(2iii) Remove the (Nzone+1)-th-to-last elements of A2 using a fixed integer Nzone > 0.
(The default value of Nzone used in Conograph is given in (A.10) of Section B.)

These procedures finish in a moment when the number of q-values in Λobs is below
100. In (2ii), e ∈ A2 with smaller detS(e) is given priority, because Step (4) of Table 1
assumes that {l∗1, l∗i } (i = 2, 3) is a primitive set (i.e., a subset of some basis) of L∗, hence
their corresponding entries ⟨{Q1, Q2}, {Q3, Q4}⟩, ⟨{R1, R2}, {R3, R4}⟩ are considered to
have a comparatively small determinant. It should be noted that C(e) also has the
property of ranking e ∈ A2 with smaller detS(e) higher, because Λobs ⊂ [qmin, qmax]
contains a larger number of tuS(e)u (u ∈ Z2) if S(e) has a smaller determinant.

B Default setting of input parameters in Conograph

The character string AUTO is used in the Conograph software to generate default param-
eters depending on respective powder diffraction patterns. In what follows, we explains
the formulas compute the value of AUTO.

1. Number of q-values used. After sorting the q-values in Λobs into ascending or-
der, the (Npeak + 1)-th-to-last parameters are removed before powder auto-indexing
commences. The default value of Npeak is calculated as

Npeak := min
{
♯{q < 10/d2 : q ∈ Λobs}, 48,M

}
, (A.9)

where ♯T is the number of elements of the set T , d is the lower threshold for the
distance between two lattice points, and M is the number of peaks detected by peak
search. (In the initial configuration of Conograph, d is set to 2Å.)
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2. Upper threshold for the number of ⟨{Q1, Q2}, {Q3, Q4}⟩.

Nzone :=

{
1
3Npeak(Npeak + 1) in quick search,
1
2Npeak(Npeak + 1) in regular search.

(A.10)

3. Upper threshold for the number of candidate solutions.

Nsol :=

{
min{64000, N2

zone} in quick search,

min{32000, 2Npeak(Npeak + 1)(Npeak + 2)/3} in regular search.
(A.11)

4. Thresholds for the volume of the primitive cell.

Volmin := max{5, v−1
20 }, (A.12)

Volmax := 30Volmin, (A.13)

where 5 Å3 is chosen as the lower threshold for the volume of existing crystals. The
parameter v20 is an upper bound on the volume of the reciprocal cell R3/L∗, which
is estimated using the 20 smallest q-values of Λobs := {q1, q2, . . . , qNPeak

} as follows:

vj :=
2π

3

q
3/2
j − q

3/2
1

j − 1
. (A.14)

The numbers 20 and 30 in (A.12), (A.13) were adopted empirically. If NPeak < 20,
vNPeak

is used instead of v20.
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