Supporting Information

for
"Statistical measures of spottiness in diffraction rings", Bridget Ingham

Calculation of surface area

For each binned grid element ABCD , the areas of the triangles $\mathrm{ABC}, \mathrm{ACD}, \mathrm{ABD}$ and $B C D$ are calculated using Heron's formula:

$$
\text { Area }=\sqrt{p(p-a)(p-b)(p-c)}
$$

where $p=\frac{a+b+c}{2}$
and a, b and c are the lengths of the sides of the triangle. The two sums (ABC+ACD and $A B D+B C D)$ are then averaged.

Additional parameters used to calculate the diffraction patterns in Figures 3 and 5
X-ray wavelength $=0.824 \AA$
Sample size $=1.5 \mathrm{~mm}$
Sample-detector distance $=136.0 \mathrm{~mm}$
Instrument broadening $=0.1 \mathrm{deg}$
d -spacing of the reflection being calculated $=2.027 \AA(\mathrm{Fe} 110)$
Multiplicity of the reflection being calculated $=12$
Accuracy parameter (used to limit the range over which each Gaussian peak is calculated, for time efficiency) $=0.001$
Output file size in pixels $=81 \times 521$
2θ (radial) range $=22.9-24.1 \mathrm{deg}$
γ (azimuthal) range $=25-155 \mathrm{deg}$
Both computer programs (for extracting statistical parameters and for calculating diffraction rings from an input size distribution) are written in Java (1.6) and can be obtained by contacting the author.

