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Appendix A
Derivation of Lattice Factor

In order to see how the lattice factor (a sum over hkl Miller indices) arises from the

sum over unit cells, consider a crystal shaped like a parallelepiped with edge-lengths

N1a, N2b, and N3c, where a, b, and c are the vectors that define the unit cell. Note

that selecting a parallelepiped simplifies the exposition, but the sequence of arguments

would be the same for any crystal shape or unit cell shape. Starting from Equation 6

in the main text, the intensity is converted into a sum over the three dimensions of

the crystal:

I(q) =

∣∣∣∣∣∣U(q)
N1∑
n1=1

eiq·n1a
N2∑
n2=1

eiq·n2b
N3∑
n3=1

eiq·n3c

∣∣∣∣∣∣
2

(1)

Each summation takes the form of a geometric progression. Re-indexing to start from

zero, we obtain:

N1−1∑
n1=0

eiq·n1a = 1 + (eiq·a)1 + (eiq·a)2 + ...+ (eiq·a)N1 (2)
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=
1− (eiq·a)N1

1− (eiq·a)

Each sum is multiplied by its complex conjugate, resulting in terms like:∣∣∣∣∣∣
N1−1∑
n1=0

eiq·n1a

∣∣∣∣∣∣
2

=

(
1− (eiq·a)N1

1− (eiq·a)

)(
1− (e−iq·a)N1

1− (e−iq·a)

)
(3)

=
1− e−iq·aN1 − e+iq·aN1 + e0

1− e−iq·a − e+iq·a + e0

=
2− 2 cos(q · aN1)

2− 2 cos(q · a)

=
sin2(q · aN1/2)

sin2(q · a/2)

Combining the results:

I(q) = |U(q)|2 sin2(q · aN1/2)

sin2(q · a/2)

sin2(q · bN2/2)

sin2(q · b/2)

sin2(q · cN3/2)

sin2(q · c/2)
(4)

= |U(q)|2 Ls(q · a, N1)Ls(q · b, N2)Ls(q · c, N3)

The function:

Ls(x,N) =
sin2(Nx/2)

sin2(x/2)
(5)

defines a peak when x = 2π (or multiple thereof). The width of the peak is controlled

by N : for small values of N , the peak is broad. As N increases, the peak becomes

narrower, in the limit approaching a delta function. Physically, this corresponds to the

constructive interference between the unit cells of the crystal: as more cells interfere

constructively, the reciprocal-space peak becomes sharper. Although the function has

oscillations beyond the central lobe, these are usually ignored and the peak-shape,

L, described using a Gaussian or Lorentzian. The width of the peak function is then

converted into a correlation length (which can frequently be interpreted as an average

crystal grain size) using a Debye-Scherrer analysis (Langford & Wilson, 1978; Smil-

gies, 2009). Note that N in Ls controls the peak height, and we thus extract it as a

prefactor while converting to the normalized peak shape L. In order to re-introduce
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the periodicity, in reciprocal space, of the peak function Ls, we note that Ls has

maxima when the following relations are satisfied:

q · a = 2πh

q · b = 2πk (6)

q · c = 2πl

Where h, k, and l are integers. We define reciprocal-space vectors:

u =
b× c

a · b× c
(7)

v =
c× a

a · b× c
(8)

w =
a× b

a · b× c
(9)

and consider q expressed in terms of these reciprocal vectors:

q = (q · a)u + (q · b)v + (q · c)w (10)

Combining with the three Laue equations (6) yields:

qhkl = (2πh)u + (2πk)v + (2πl)w

= 2π(hu + kv + lw) (11)

= 2πHhkl

Where Hhkl is a vector that defines the position of Bragg reflection hkl for the

reciprocal-lattice. Now that we are considering only the positions where scattering

appears in reciprocal-space, we can convert the intensity to a sum over the reciprocal-

space positions of the peaks.

I(q) = N1N2N3

∑
{hkl}

|U(qhkl)|2 L(q− qhkl) (12)

Where the {hkl} denotes the indices of the reciprocal-space lattice. This allows us to

generalize to an arbitrary lattice type. The effect of lattice symmetry is to define the
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positions of the reciprocal-space peaks via the {hkl} indices and the corresponding

rules for qhkl. For powder-like samples, the beam probes grains at all possible orien-

tations. The observed scattering then depends only on the magnitude of q. We thus

introduce an orientation average, denoted by angled brackets (with subscript o):

I(q) = 〈I(q)〉o

=

〈
Nn

mhkl∑
{hkl}

|U(qhkl)|2 L(q− qhkl)

〉
o

(13)

=
Nn

Ωqd−1

mhkl∑
{hkl}

|U(qhkl)|2 L(q − qhkl)

Where Ωqd−1 is a Lorentz factor accounting for the orientational averaging (Ω is a

solid angle, and d is dimensionality). Generally we consider three-dimensional lat-

tices, and an isotropic (spherically symmetric) orientational average, wherein d = 3

and Ω = 4π. This can be intuitively understood by considering the surface area of

spherical averaging, in reciprocal space. The scattering intensity from lattice peaks at

a particular q will be spread out over an area
∫ 2π
0

∫ π
0 q

2 sin θdθdφ = 4πq2, and we thus

divide the sum of peak intensities by that area. Different orientational symmetries can

give rise to different correction factors. Finally, we express position within the unit

cell in terms of our new reciprocal-space definitions, by defining fractional coordinates

xj , yj , and zj , for the three axes of the unit cell:

rj = xja + yjb + zjc (14)

Such that:

qhkl · rj = 2π(hu + kv + lw) · (xja + yjb + zjc) (15)

= 2π(hxj + kyj + lzj)

Which leads to the following expression for the intensity (and the definition of the
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lattice factor shown in equation 7 of the main text):

I(q) =
Nn

Ωqd−1

mhkl∑
{hkl}

∣∣∣∣∣∣
Nj∑
j=1

Fj(qhkl)e
2πi(xjh+yjk+zj l)

∣∣∣∣∣∣
2

L(q − qhkl) (16)

Appendix B
Generalized Peak Shape Function

We describe here the peak-shape function introduced in the literature to allow for

a generalized shape that can mix Gaussian and Lorentzian character (Micha, 1998;

Forster et al., 2005). The defining equation is:

Lhkl(q) =
2

πδ

∞∏
n=0

(
1 +

γ2ν
(n+ ν/2)2

4q2s
π2δ2

)−1
(17)

=
2

πδ

∣∣∣∣∣Γ
[
ν/2 + iγν(4q2s/π

2δ2)2
]

Γ [ν/2]

∣∣∣∣∣
2

(18)

Where qs = (q−qhkl), δ describes the peak width, and ν describes the peak shape. The

function is normalized (
∫+∞
−∞ Lhkl(q)dq = 1). The parameter γν is a ratio of gamma

functions:

γν =
√
π

Γ [(ν + 1)/2]

Γ [ν + /2]
(19)

The limiting cases for peak shape are:

Lhkl(qs) =


δ/2π

q2s+(δ/2)2
for ν → 0 (Lorentzian)

2
πδ exp

[
− 4q2s
πδ2

]
for ν →∞ (Gaussian)

(20)

Thus the parameter ν allows one to vary continuously between a Lorentzian peak

shape and a Gaussian peak shape. For ν > 200, a pure Gaussian becomes an accept-

able approximation, and for ν < 0.005, a simple Lorentzian can be used. The peak

width parameter, δ, in the Lorentzian limit is simply the full-width at half-maximum

(FWHM): δlorentz = FWHMlorentz. In the Gaussian limit, δ is related to the standard

deviation (σ) as:

δgauss =

√
8

π
σgauss =

FWHMgauss√
π ln 2

(21)
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This versatile peak shape allows one to account for the various contributions to peak

broadening (instrumental resolution, grain size, grain shape, microstrain). Of course,

when comparing to experimental data, it is preferable (where possible) to convolve

the simulated curve with the known instrumental resolution function, and to then use

a physically-grounded peak shape function.
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