

Volume 71 (2015)

Supporting information for article:

Structural basis for the catalytic mechanism of homoserine dehydrogenase

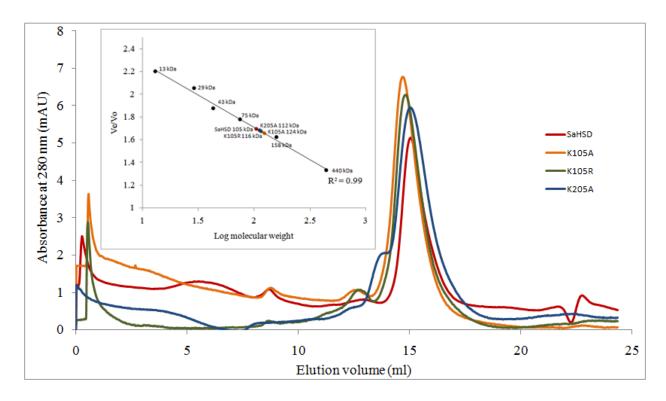

Vikas Navratna, Govardhan Reddy and Balasubramanian Gopal

 Table S1
 List of primers used in this study

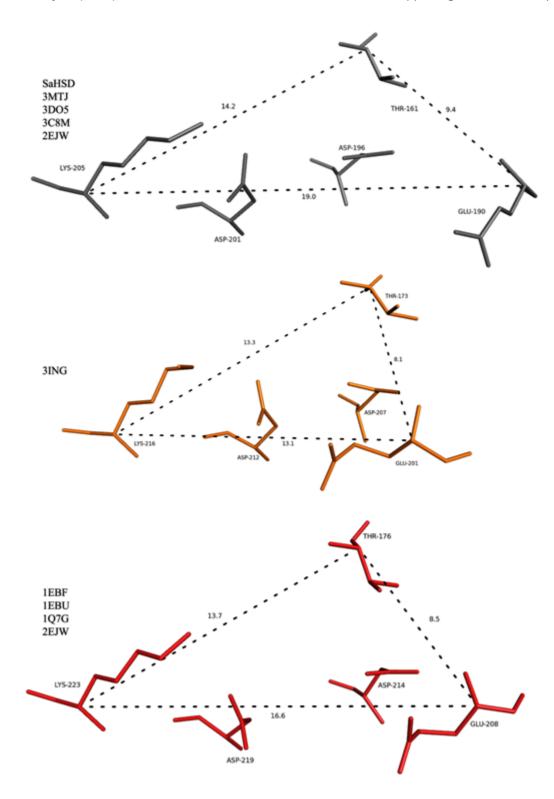

Target	Expression	Direction	Primer sequence (5'- 3')
	vector	of primer	
HSD	pET15b and	Forward	CACGGCTAGCATGAAAAATTAAATATA
	pET28b	Reverse	CGACCTCGAGAACTCCTTCTACTGGGTA
K105A	pET15b	Forward	GCAGATTTATTAGCAGTACATCTTAAACTTTTAGAAGATT
HSD		Reverse	ATTTGCGGTAATAACATGTTTTTTATTTTTAAG
K105R	pET15b	Forward	AGAGATTTATTAGCAGTACATCTTAAACTTTTAGAAGATT
HSD		Reverse	ATTTGCGGTAATAACATGTTTTTTATTTTTAAG

 Table S2
 Crystallization conditions for S. aureus HSD

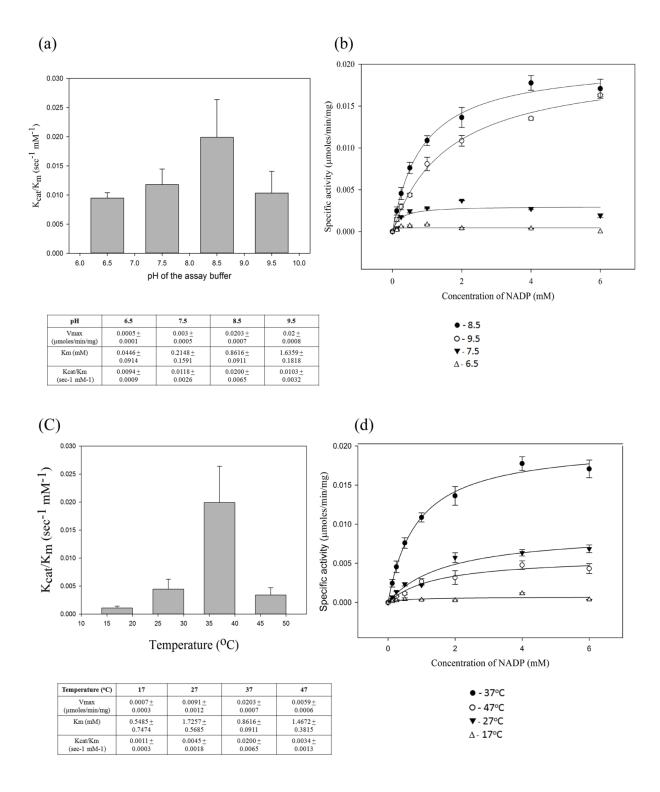

pН	Condition	Cryo-	Method of
		protectant	crystallization
8.5	0.2M Magnesium acetate, 14% (w/v) PEG8000, 0.2M Bicine,	15% DMSO	Hanging drop
	5% Glycerol		vapour diffusion
	(200µl of (1:1 ratio of paraffin and silicone) oil was overlaid on		
	the mother liquor in reservoir well)		
7.5	0.2M Magnesium acetate, 16% (w/v) PEG8000, 0.1M Tris-	15% DMSO	Hanging drop
	HCl, 3% Glycerol		vapour diffusion
	(Crystal soaked with 5mM Lysine and 4mM NADP for 2min)		
7.0	0.2M Magnesium acetate, 16% (w/v) PEG3350, 0.1M HEPES,	15% DMSO	Sitting drop
	20% Isopropanol, 5% Glycerol (Crystal soaked with 5mM		vapour diffusion
	Serine for 2min)		
6.5	0.2M Magnesium acetate, 16% (w/v) PEG3350, 0.1M Sodium	15% DMSO	Sitting drop
	cacodylate, 5% Glycerol (Crystal soaked with 5mM Serine and		vapour diffusion
	2mM NADP for 2min)		
6.0	0.2M Magnesium acetate, 22% (w/v) PEG8000, 0.1M Bis-Tris,	15% DMSO	Microbatch
	1mM Serine, 5% Glycerol		

Figure S1 Characterization of K205A, K105A and K105R mutants. Quaternary structure analysis using size exclusion chromatography suggests that the mutation of either Lys105 or Lys205 did not alter the integrity and oligomeric association of HSD.

Figure S2 The variation in the distances between the catalytic residues in HSD across homologues. This analysis suggests that conformational changes, either by co-factor or activator binding, could trigger catalytic activity.

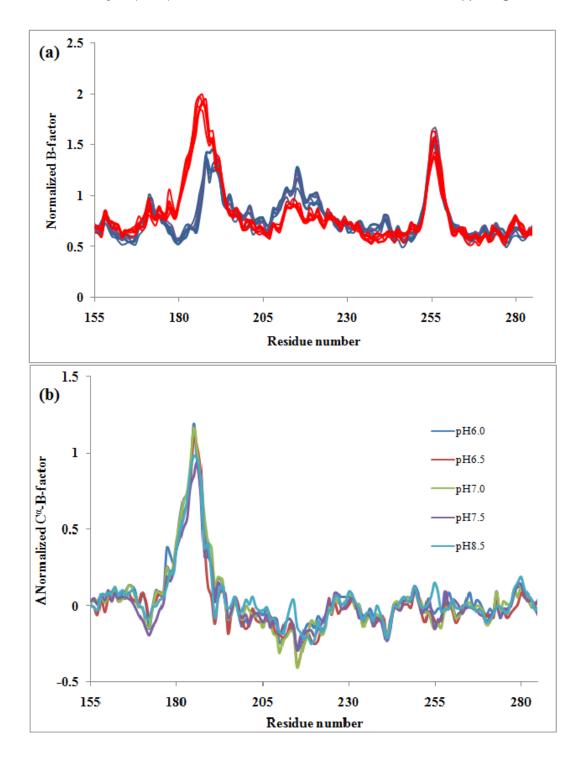
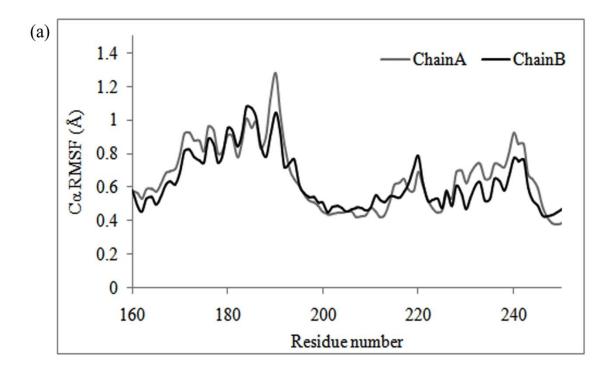


Figure S3 Specific activity measurements under various conditions. The specific activity (panels b and d) suggest that HSD is most active at basic pH (optima pH 8.5) and 37° C. The effect of pH and temperature variations on catalytic activity are represented as K_{cat}/K_{m} plots in panels (a) and (c) respectively.



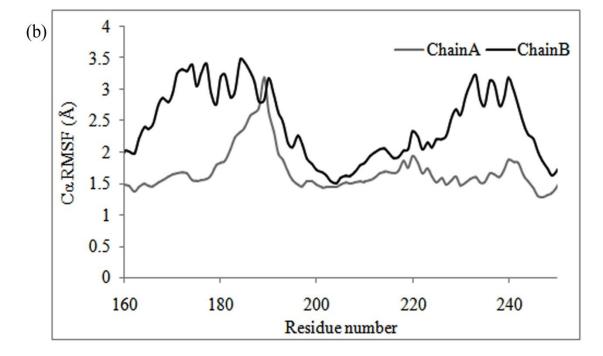

Regulators	Thr (30mM)	Ser (30mM)	-
V _{max} (μmole/min/mg)	0.0234 <u>+</u> 0.0010	0.0182 ± 0.0005	0.0186 ± 0.0005
Km (mM)	1.0807 ± 0.1324	1.0122 ± 0.0822	0.6942 ± 0.0574

Figure S4 L-Ser and L-Thr do not influence the catalytic activity of *S. aureus* HSD.

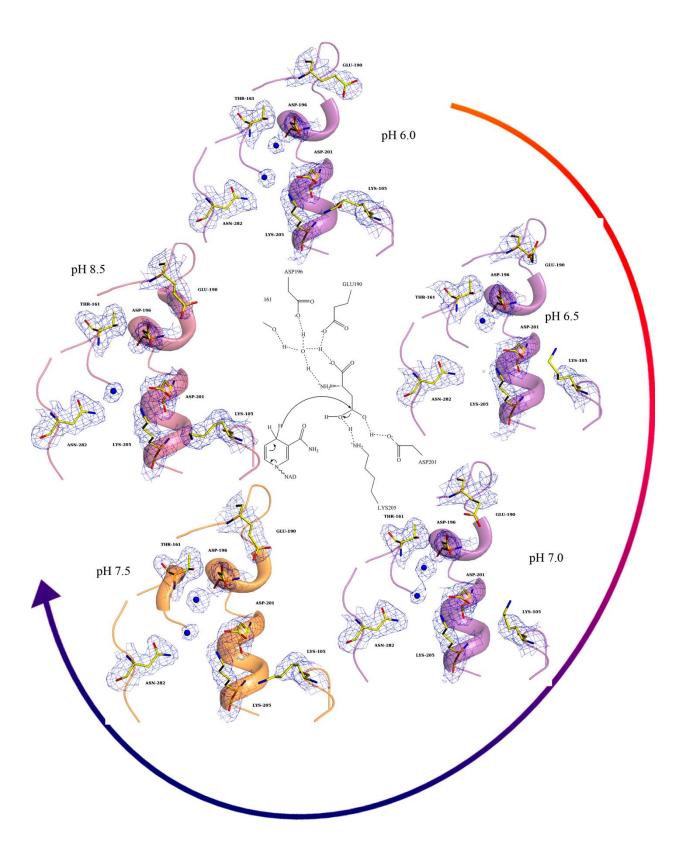


Figure S5 Normalized B-factor plots comparing the two monomers in *S. aureus* HSD. (a) A superposition of normalized $C\alpha$ -B-factors for the residues comprising the active site (155-285) shows chain B (red) has higher B-factor than chain A (blue) in all the pH conditions that were examined. (b) A plot of difference in the normalized $C\alpha$ -B-factors between chain B and chain A reiterates the observation that this difference is independent of pH.

Figure S6 The C α Root Mean Square Position Fluctuations (RMSF) of *S. aureus* HSD. The C α RMSF analysis of an isolated dimer (a) and the dimer surrounded by three other dimers in the P2₁2₁2₁ unit cell (b suggests that apparent higher flexibility of one chain than the other can be ascribed to crystal packing.

Figure S7 The hydration at the active site of the 'inert' monomer (Chain A). These snapshots (experimental maps contoured at 1σ) can be compared with figure 4.