

Volume 71 (2015)

Supporting information for article:

Structure of a double-domain phosphagen kinase reveals an

asymmetric arrangement of the tandem domains

Zhiming Wang, Zhu Qiao, Sheng Ye and Rongguang Zhang

Table S1	The melting temperature (T_m) of ddAK from Anthopleura japonicas in different
buffers.	

Buffer ^a	рН	$T_{\rm m}$ (°C)
Sodium acetate	4.5	37.5
Sodium acetate	5.0	42.7
MES	5.5	44.9
BIS-TRIS	5.5	45.0
MES	6.0	46.2
MES	6.5	47.3
BIS-TRIS	6.5	47.4
HEPES	7.0	48.3
Tris-HCl	7.5	48.0
Tris-HCl	8.0	48.3
Tris-HCl	8.5	47.8
CHES	9.0	47.4
CHES	9.5	44.0

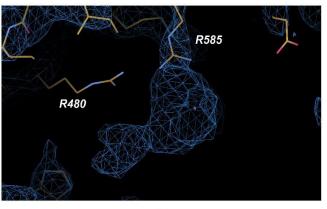
^a Buffers were prepared at a concentration of 50 mM in the presence of 20 mM sodium chloride.

Table S2 The melting temperature (*T*m) of ddAK from *Anthopleura japonicas* in the

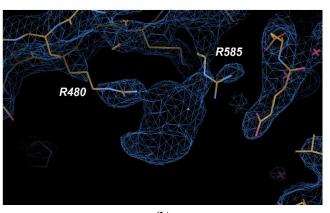
Ligands ^a	Concentration	$T_{\rm m}$ (°C)
Control	N/A	48.4
ADP	10	49.7
ΑΤΡγS	1	49.5
AMPPNP	1.5	50.2
Arginine	10	53.0
ADP/Arginine	5 / 5	53.6
ATPγS/Arginine	1/1	50.2
AMPPNP/Arginine	1.5 / 5	53.4

presence of different ligands.

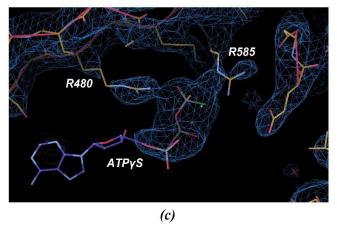
^a Ligands were solved in a buffer containing 50 mM HEPES (pH 7.0) and 20 mM sodium chloride.


_

Mutants	Specific activity (μ M/min/mg) ^a	Relative activity (%) ^b
Wild type	279.87 ± 10.90	100
R122A	166.49 ± 25.70	59.49 ± 9.18
R122K	193.14 ± 8.37	69.01 ± 2.99
D408A	200.30 ± 32.29	71.57 ± 11.54
D408E	169.21 ± 8.38	60.46 ± 2.30
R501A	159.02 ± 16.96	56.82 ± 6.06
R122D/D408R	167.66 ± 18.78	59.91 ± 6.71
R122Y/D408H	286.54 ± 19.03	102.38 ± 6.80
ΔTGE1	180.74 ± 19.26	64.58 ± 6.88
∆TGE2	156.00 ± 8.73	55.74 ± 3.12
ΔTGE1/2	92.65 ± 8.91	33.10 ± 3.18


Table S3 The specific activity of ddAK from Anthopleura japonicas

^a The specific activities are the mean \pm SD of triplicate determinations.


^b The relative activity of the wild type is defined as 100.00%.

(a)

Figure S1 Uninterpretable electron density maps around the active site of ddAK-D2 in the arginine/ATP γ S-bound complex structure. The omit map (at 1.0 contour level) depicted in blue meshes was calculated by using PHENIX.CalculateMaps (Afonine, Grosse-Kunstleve et al. 2012) with a protein model without any ligands to provide phases. Figures were prepared using COOT (Emsley and Cowtan 2004). (*a*) The uninterpretable map around the active site of ddAK-D2 in chain A. (*b*) The uninterpretable map around the active site of ddAK-D2 in chain B. (*c*) The same map in (*b*) overlapped to a refined model with ATP γ S at the active site. A

reasonable explanation to this bulk of electron density map could be the negatively charged phosphoryl groups of ATP γ S, of which the nucleoside group cannot be observed due to its extremely high flexibility. In the crystallization solution of this complex, there is no more small molecules than ATP γ S that can provide such a strong electron density, but other possibilities still remain. Therefore, we decided to leave these uninterpretable maps empty with no small molecules to fit in.