## **Supplementary Information**

# Structural Basis of Sialidase in Complex with Geranylated Flavonoids as Potent Natural Inhibitors

Youngjin Lee,<sup>a,b‡</sup> Young Bae Ryu,<sup>d‡</sup> Hyung-Seop Youn,<sup>a,b‡</sup> Jung Keun Cho,<sup>e</sup> Young Min Kim,<sup>d</sup> Ji-Young Park,<sup>d</sup> Woo Song Lee,<sup>d</sup> Ki Hun Park<sup>e</sup>\* and Soo Hyun Eom<sup>a,b,c</sup>\*

<sup>a</sup>School of Life Sciences, <sup>b</sup>Steitz Center for Structural Biology and <sup>c</sup>Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Buk-gu, Gwangju 500-712, Republic of Korea, <sup>d</sup>Infection Control Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 580-185, Republic of Korea, and <sup>e</sup>Division of Applied Life Science (BK21 plus, IALS), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea

<sup>‡</sup> These authors contributed equally to this work. Correspondence email: khpark@gnu.ac.kr; eom@gist.ac.kr

\*Corresponding authors:

Ki Hun Park: <u>khpark@gnu.ac.kr</u>, Phone : +82- 55-751-5472, Fax: + 82-55-757-0178

Soo Hyun Eom<sup>#</sup>: <u>eom@gist.ac.kr</u>, Phone: +82-62-715-2519, Fax: +82-62-715-2521 # Person to contact for this submission

#### 1. Supplementary Figures

| <b>Supplementary Figure 1.</b> Multiple sequence alignment <sup>1</sup> of <i>Clostridium perfringens (Cp)</i> -NanI and    | 3  |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| human (Homo sapiens (Hs)) Neu1–4.                                                                                           |    |
| Supplementary Figure 2. Superposed overall structures of <i>Hs</i> -Neu1–4.                                                 | 5  |
| Supplementary Figure 3. Scheme for time-dependent enzyme inhibition.                                                        | 6  |
| Supplementary Figure 4. Lineweaver-Burk plot for inhibition of <i>Cp</i> -NanI by diplacone.                                | 7  |
| Supplementary Figure 5. Superposition of the eight sialidase catalytic domains.                                             | 8  |
| <b>Supplementary Figure 6.</b> $2F_o - F_c$ composite omit map of diplacone contoured at 1.0 $\sigma$ .                     | 9  |
| <b>Supplementary Figure 7.</b> Structural comparison of <i>Cp</i> -NanI and drug-resistant mutants of viral neuraminidases. | 10 |

#### 2. Supplementary Tables

| <b>Supplementary Table 1.</b> Root mean square deviation (Å) of <i>Hs</i> -Neu1–4.    | 11 |
|---------------------------------------------------------------------------------------|----|
| Supplementary Table 2. Validation results of <i>Hs</i> -Neu1–4 structures.            | 12 |
| Supplementary Table 3. Conservation of the structures of sialidase catalytic domains. | 13 |

#### 3. Supplementary References 14

а

| Cp-Nanl:VEGAVKTEPVDLFHPGFLNSSNYRIEAFFKTKE-GTLIASIDARRHGGADAPNNDIDTAVR:SEDG-    Hs-Neu1:VT-MEQILWVSGRQIGSVDTFRIELFTATF-RGTLLAFAEARKHGGADAPNNDIDTAVR:SEDG-    Hs-Neu2:LQ-KESVF-QSGRQIGSVDTFRIELFTATF-RGTLLAFAEARKSKKDEHAELIVLR:GDYDA -    Hs-Neu3: MEEV                                                                                                                                                                                                                                                                                    | 307<br>117<br>61<br>65<br>63<br>81<br>65      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Cp-Nanl:GKTWDEGQIIMDYPDKSSVIDTTLIC DETGRIFLLVTHFPSKYGFWNAGLGTSYINLVYSDDGK-TWSEPQXINFQV<br>Hs-Neu1:GSTWSPTAFINDGDVPDGLNLGA-VVSVETGVVFLFYSLCAHKAGCQVSTMLVWSKDDGVSWSTPRXIS-LD<br>Hs-Neu2:PTHQVQWQAQE-VVAQARLDGHRSMNPCPYYAQTGTLFLFFIAIPGQVTEQQQLQTRAN-VTRLCQVTSTDHGRTWSSPRITDAA<br>Hs-Neu3:GLVQWGPLK-PIMEATLPGHRTMNPCPVWEQKSGCVFLFFICVRGHVTERQQIVSGRN-ARLCFIYSQDAGCSWSEVRITEEV<br>Hs-Neu4:GSVRWGALH-VIGTAALAEHRSMNPCPYHAGTGTVFLFFIAVLGHTPEAVQIATGRN-ARLCCVASRDAGLSWGSARITEEA<br>IA-NA:SSPPTVYNSRVECIGWSSTSCHGKTRMSICISGPNN-NISAVIWYNRRPVTEIN | 453<br>190<br>146<br>148<br>145<br>135<br>139 |
| Cp-Nanl:  KKDWMKFLGIAPG-RGIQIKNGEHKGRIVY  PVYYTNEKGKQSSAVIYSDDSGINWTIGESPNDNRKLENGKIIN    Hs-Neu1:  IGTEVFAPGPGSGICKQREPRKGRI  IVCGHGTLERDGVFCLLSDDHCASWRYGSGVSGIPYG    Hs-Neu2:  IGPAYREWSTFAVGPGHCIQLNDRARSLV  PAYAYRKLHPIQRPIPSAFCFLSHDHCA  TWARGHFVA                                                                                                                                                                                                                                                                                 | 526<br>252<br>213<br>220<br>217<br>191<br>195 |
| Cp-Nanl:SkTlsDDAPQUTB  CQVVEMPNGQIKLFMRNL-SGYLNIATSFDGGATWDETVEKDTNVLEP                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 585<br>311<br>268<br>276<br>273<br>256<br>261 |
| Cp-Nanl: YCQLSVINYSQKVD-GKDAVIFSNPNAR-S:SNGTVRIGLINQVGTYENGEPKYEFDW-G    Hs-Neu1: ELVDPVVAAGAVV-TSSGIVFFSNPAHPEFKVNLTIRWSFSNGT-SWR-3    Hs-Neu2:                                                                                                                                                                                                                                                                                                                                                                                         | 543<br>357<br>323<br>357<br>347<br>308<br>318 |
| Cp-Nanl:KY-NKLVKP-GYYAYSCLTP:SNGNIGLVY0GTPSEEMSYIEMNLKYLESG6<br>Hs-Neu1:KE-TVQ WP-GPSGYSLAT EGSMDGEEQAPQLYVYVKGRNHYTESISVAKISVYG-TL4<br>Hs-Neu2:-PVLLAKGSCAYSDLQSYGTGPDGSPLFGCYPANDYEEIVFLMFTLKQAFPA-EY                                                                                                                                                                                                                                                                                                                                  | 91<br>15<br>77<br>107<br>166<br>383           |

b

| Proteins | Conserved residues |      |      |      | Variable residues |      |                        |
|----------|--------------------|------|------|------|-------------------|------|------------------------|
| Cp-Nanl  | R266               | D328 | E539 | R555 | R615              | Y655 | F353, T487, Y587       |
| Hs-Neu1  | R26                | —    | E205 | R228 | R289              | Y318 | E111, Y179, W274       |
| Hs-Neu2  | R21                | N86  | E218 | R237 | R304              | Y334 | E111, Y181, Q270       |
| Hs-Neu3  | R25                | N88  | E225 | R245 | R315              | Y345 | E113, Y181, H277       |
| Hs-Neu4  | R23                | N86  | E222 | R242 | R313              | Y343 | H168, Q204, Q230, Q260 |
| IA-NA    | R119               | _    | E279 | R294 | R372              | Y406 | R155, I224, N296       |
| IB-NA    | R115               | _    | E275 | R291 | R373              | Y108 | R149, I220, N293       |

**Supplementary Figure 1.** Multiple sequence alignment<sup>1</sup> of *Clostridium perfringens (Cp)*-NanI and human (*Homo sapiens (Hs)*) Neu1–4. (a) Total five sequences were aligned: *Cp*-NanI (*WP\_011590331.1*, residues 243–691 and  $\Delta$ 361–426); *Hs*-Neu1 (*NM\_000434.2*, residues 65–407); *Hs*-Neu2 (*NM\_005383.2*, residues 12–377); *Hs*-Neu3 (*NM\_006656.5*, residues 12–407,  $\Delta$ 287–300 and  $\Delta$ 315–326); *Hs*-Neu4 (*NM\_001167599.1*, residues 11–466,  $\Delta$ 284–336 and  $\Delta$ 355–373); Influenza A neuraminidase (IA-NA) (strain A/Tern/Australia/G70C/1975 H11N9) (M17813.1, residues, 14–383); Influenza B neuraminidase (IB-NA) (strain B/Beijing/1/1987) (M54967.2, residues, 16–388). The italic codes mean NCBI GenBank reference sequence numbers. Residues showing multi-drug resistances of viral NAs are shown as black filled circles in the above of the sequences. (b) Conserved and variable residues of *Cp*-NanI, *Hs*-Neu1–4, IA-NA, and IB-NA.



**Supplementary Figure 2.** Superposed overall structures of *Hs*-Neu1–4. *Hs*-Neu1 (purple), *Hs*-Neu3 (green) and *Hs*-Neu4 (magenta) was built from Modeller9v7 software<sup>2</sup> based on reported *Hs*-Neu2 structure (PDB code, 1VCU; grey)<sup>3</sup>.

$$[P] = v_{st} + (v_i - v_s) [1 - \exp(-k_{obs}t)] / k_{obs}$$
 (2)

$$k_{obs} = k_6 + [(k_5 \times [I]) / (K_i^{app} + [I])]$$
 (3)



**Supplementary Figure 3.** Scheme for time-dependent enzyme inhibition. (a) Equations, (2) and (3) to determine  $v_i$ ,  $v_s$ , and  $k_{obs}$  from the curves using various concentrations of the inhibitors. (b) The upper part denotes the turnover of the enzyme in the absence of inhibition. The lower part illustrates the equilibrium for a slow-binding inhibition process.



Supplementary Figure 4. Lineweaver-Burk plot for inhibition of *Cp*-NanI by diplacone.



**Supplementary Figure 5.** Superposition of the eight sialidase catalytic domains. (a) Superposed sialidase catalytic domains (2VK5, grey; 1SLL, orange; 2XCY, blue; 1MZ5, green; 2SIL, brown; 2VW0, yellow; 7NN9, magenta; 1VCU, blue). Detail information was described in Table S1. (b) Structural conservation of the residues in the active site. The residues were labeled based on *Cp*-NanI sequence.



**Supplementary Figure 6.**  $2F_o - F_c$  composite omit map of diplacone contoured at 1.0  $\sigma$ .



**Supplementary Figure 7.** Structural comparison of *Cp*-NanI and drug-resistant mutants of viral neuraminidases. *Cp*-NanI-diplacone, H1N1 viral NA (I223R)-oseltamivir (PDB code, 4B7J), and H5N1 viral NA (H274Y)-oseltamivir (PDB code, 3CL0) complexes are colored in green, magenta, and orange, respectively. (a) Overall superposed structures. (b) Detail view of the active sites.

### Supplementary Table 1. Root mean square deviation (Å) of *Hs*-Neu1–4.

| Proteins             | Hs-Neu1 <sup>§</sup> | Hs-Neu2 <sup>*</sup> | Hs-Neu3 <sup>§</sup> | Hs-Neu4 <sup>§</sup> |
|----------------------|----------------------|----------------------|----------------------|----------------------|
| Hs-Neu1 <sup>§</sup> | _                    | 0.356                | 0.481                | 0.317                |
| Hs-Neu2 <sup>*</sup> | _                    | -                    | 0.134                | 0.120                |
| Hs-Neu3 <sup>§</sup> | _                    | -                    | -                    | 0.156                |

\* Chain A of *Hs*-Neu2 (PDB code, 1VCU) \* *Hs*-Neu1, *Hs*-Neu3 and *Hs*-Neu4 were built by homology modeling based on *Hs*-Neu2.

|                          | Hs-Neu1 <sup>§</sup> | Hs-Neu2* | Hs-Neu3 <sup>§</sup> | Hs-Neu4 <sup>§</sup> |
|--------------------------|----------------------|----------|----------------------|----------------------|
| Ramachandran plot        |                      |          |                      |                      |
| Most favored (%)         | 81.0                 | 77.7     | 81.6                 | 86.6                 |
| Additionally allowed (%) | 14.8                 | 22.3     | 16.9                 | 10.6                 |
| Generously allowed (%)   | 2.0                  | 0        | 1.5                  | 0.9                  |
| Disallowed (%)           | 2.3                  | 0        | 0                    | 1.9                  |
| Z score                  | -2.94                | -5.80    | -5.59                | -5.04                |

**Supplementary Table 2.** Validation results of *Hs*-Neu1–4 structures.

\*Chain A of *Hs*-Neu2 (PDB code, 1VCU) \**Hs*-Neu1, *Hs*-Neu3 and *Hs*-Neu4 were built by homology modeling based on *Hs*-Neu2.

**Supplementary Table 3.** Conservation of the structures of sialidase catalytic domains.

| Gene name        | Species                  | PDB code           | RMSD (Å) |
|------------------|--------------------------|--------------------|----------|
| NanI             | Clostridium perfringens  | 2VK5 <sup>4</sup>  | _        |
| Τ7               | Macrobdella decora       | 1SLL <sup>5</sup>  | 1.00     |
| AFUA_4G<br>13800 | Aspergillus furmigatus   | 2XCY <sup>6</sup>  | 1.15     |
| mndE'            | Tripanosoma rangeli      | 1MZ5 <sup>7</sup>  | 1.30     |
| NanH             | Salmonella typhimurium   | 2SIL <sup>8</sup>  | 1.34     |
| NanB             | Streptococcus pneumoniae | 2VW0 <sup>9</sup>  | 1.20     |
| NA               | Influenza A              | 7NN9 <sup>10</sup> | 1.00     |
| NEU2             | Homo sapiens             | 1VCU <sup>3</sup>  | 1.19     |

#### **Supplementary References**

- 1. Nicholas, H. B. & Deerfield II, D. W. (1997). EMBNEW.NEWS. 4, 14.
- 2. Sali, A. & Blundell, T. L. (1993). J. Mol. Biol. 234, 779-815.
- Chavas, L. M., Tringali, C., Fusi, P., Venerando, B., Tettamanti, G., Kato, R., Monti, E. & Wakatsuki, S. (2005). J. Biol. Chem. 7, 469–475.
- Newstead, S. L., Potter, J. A., Wilson, J. C., Xu, G., C.-H., Chien, Watts, A. G., Withers, S. G. & Taylor, G. L. (2008). *J. Biol. Chem.* 283, 9080–9088.
- 5. Luo, Y., Li, S. C., Chou, M. Y., Li, Y. T. & Luo, M. (1998). Structure, 6, 521–530.
- Telford, J. C., Yeung, J. H., Xu, G., Kiefel, M. J., Watts, A. G., Hader, S., Chan, J., Bennet, A. J., Moore, M. M. & Taylor, G. L. (2011). *J. Biol. Chem.* 286, 10783–10792.
- Buschiazzo, A., Tavares, G. A., Campetella, O., Spinelli, S., Cremona, M. L., París, G., Amaya, M. F., Frasch, A. C. & Alzari, P. M. (2000). *EMBO J.* 19, 16–24.
- Crennell, S. J., Garman, E. F., Philippon, C., Vasella, A., Laver, W. G., Vimr, E. R. & Taylor, G. L., (1996). J. Mol. Biol. 259, 264–280.
- Xu, G., Potter, J. A., Russell, R. J., Oggioni, M. R., Andrew, P. W., & Taylor, G. L. (2008). J. Mol. Biol. 384, 436–449.
- 10. Varghese, J. N., Epa, V. C., & Colman, P. M. (1995). Protein Sci. 4, 1081–1087.