Acta Crystallographica Section D

Volume 70 (2014)

Supporting information for article:

Coiled-coil deformations in crystal structures: the measles virus phosphoprotein multimerization domain as an illustrative example

David Blocquel, Johnny Habchi, Eric Durand, Marion Sevajol, François Ferron, Jenny Erales, Nicolas Papageorgiou and Sonia Longhi

Figure S2 Cross-linking experiments of MeV PMD. Coomassie stained 18% SDS-PAGE showing the results of cross-linking with SAB (see Experimental Procedures) of peak 1 (A) and peak 2 (B). The concentration of SAB (μ M) is indicated above the gel.

Figure S3 Analysis of MeV PMD by far-UV circular dichroism. (A) Far-UV CD spectra of MeV PMD peaks 1 and 2 at 0.1 mg/mL in 10 mM sodium phosphate pH 7 either in the absence or presence of 50% TFE at 20°C. Data are representative of one out of three independent acquisitions. The inset shows the relative secondary structure content along with the ellipticity ratio at 222 and 208 nm ($\Theta_{222/208}$). (B) Mean residue ellipticity at 222 nm (MRE₂₂₂) of MeV PMD peak 2 as a function of the T. Data are representative of one out of three independent experiments. Protein and buffer concentrations were the same as described above. The blue and red lines show the variation of MRE₂₂₂ during heating and cooling, respectively.

				(070							
4BHV				4C5Q				3ZDO			
А	В	С	D	A	В	С	D	А	В	С	D
asp 314	asp 314	asp 314	asp 314			asp 314			asp 314	asp 314	asp 314
ile 318	val 315										
leu 322	ile 318	ile 318	ile 318	ile 318							
ile 325	leu 322	leu 322	leu 322	leu 322							
asp 328	asp 328	asp 328	asp 328	his 326	his 326	his 326	his 326		ile 325	ile 325	ile 325
asn 329	asn 329	asn 329	asn 329	asp 328	asp 328	asp 328	asp 328		asp 328	asp 328	asp 328
ile 332	ile 332	ile 332	ile 332	asn 329							
ile 333	ile 333	ile 333	ile 333	ile 332							
lys 335	lys 335	lys 335	lys 335	ile 333		ile 333	ile 333				
leu 336	leu 336	leu 336	leu 336	lys 335	lys 335	lys 335	lys 335		lys 335	lys 335	
		leu 339		leu 336							
val 346	leu 339	leu 339									
	ile 349	ile 349		ile 349	ile 349	ile 349	ile 349			lys 343	
	lys 350			lys 350		lys 350			glu 345		
	gln 352	gln 352		gln 352			gln 352	Val 346	val 346	val 346	val 346
ile 353	ile 349	ile 349		ile 349							
	gln 356							lys 350			
											gln 352
								ile 353	ile 353	ile 353	ile 353
								gln 356	gln 356	gln 356	gln 356
								asn 357		asn 357	
								ile 360	ile 360	ile 360	ile 360
								leu 363	leu 363	leu 363	leu 363
											glu 364
									his 366		leu 367

Table S1Knobs into holes analysis in all protomers of the three PMD structures