Supporting Information

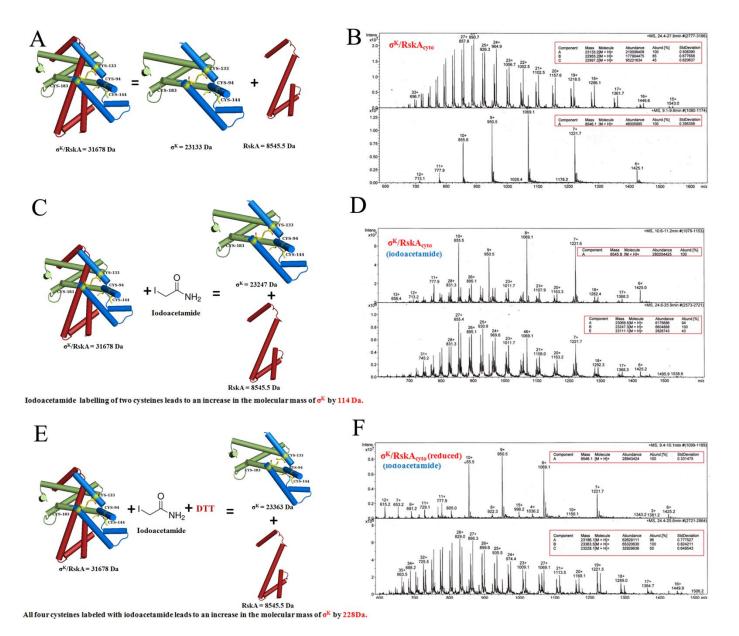
G	Clone Vector MW (I-Da) Protein						
Sr.	Clone	Vector	MW (kDa)	Protein			
No.	¥7						
1	σ ^K / RskA _{cyto}	MCS1-pETDUET1	21.9 + 8.5	Expressed, purified and			
		+RskA		crystallized in complex with			
				RskA			
2	σ ^K (C133S)/ RskA _{cyto}	Site directed mutagenesis	21.9 + 8.5	Purified as σ^{K} (C133S) /RskA			
	·	in pETDUET-1 σ^{K} /RskA		complex			
3	σ ^K (C183S)/RskA _{cyto}	Site directed mutagenesis	21.9 + 8.5	Purified as σ^{K} (C183S) /RskA			
		in pETDUET-1 σ ^K /RskA		complex			
4	$\sigma^{K}(C133S, C183S)/$	Site directed mutagenesis	21.9 + 8.5	Purified as σ^{K} (C133S, C183S)			
	RskA _{cyto}	in pETDUET-1 σ^{K}		/RskA complex			
	Cyto	C133S/RskA		· · · · · · · · · · · · · · · · · · ·			
5	RskA (1-232)	pET15b	25.8	Insoluble – purified as a denatured			
Ũ	(1 202)	P21100	2010	protein.			
6	RskA _{cvto} (1-80)	MCS1-pETDUET1	10.3	Purified as a poly-histidine-tagged			
0	$\mathrm{KSKA}_{\mathrm{cyto}}(1-00)$	MC31-pE1DOETT	10.5	protein			
7.	σ_{4}^{K} (123-187)	pET22b	7.8	Purified by cation exchange			
7.	0 4 (123-107)	pE1220	7.0	chromatography			
0	$\sigma^{K}/RskA$ (<i>M</i> .	MOS2 = ET28 + -K	21.9 + 70.2	•			
8		MCS2- pET28a+ σ^{K} -	21.9 + 70.2	Expressed in <i>E. coli</i> C43 (DE3)			
	tuberculosis-1-232)	RskA (M. tuberculosis -					
	phoA (23-471)	1-232) with C-term					
	K	poly-histidine tag					
9	σ^{K} /RskA (<i>M. bovis</i> -1-	MCS2- pET28a+ σ^{K} -	21.9 + 70.2	Expressed in E. coli C43 (DE3)			
	232) phoA (23-	RskA (<i>M. bovis</i> - 1-232)					
	471)	with C-term poly-					
	W.	histidine tag					
10	σ^{K} RskA (<i>M</i> .	MCS2- pET28a+ σ^{K} -	21.9 + 70.2	Expressed in E. coli C43 (DE3)			
	tuberculosis- 1-232)	RskA (M. tuberculosis -					
	phoA (23-471)	1-232) without poly-					
		histidine tag					
11	σ^{K} /RskA (<i>M. bovis</i> -1-	MCS2- pET28a+ σ^{K} -	21.9 + 70.2	Expressed in E. coli C43 (DE3)			
	232) phoA (23-	RskA (M. bovis - 1-232)					
	471)	without poly-histidine					
		tag					

Supporting Table S1: List of expression constructs examined

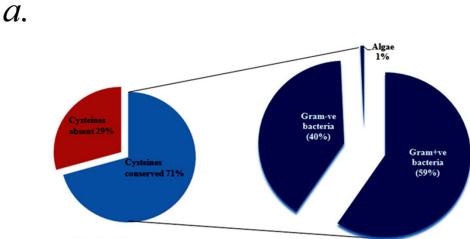
Organism	Domains	Superposed On	PDB ID	RMSD (Å)			
Domain 2							
Rhodobacter sphearoides	σ_2^{K}	σ_2^E	2Z2S	1.06			
E. coli	σ_2^{K}	σ_2^E	10R7	1.04			
Domain 4							
M. tuberculosis	σ_{4}^{K}	σ_4^L	10R7	1.18			
E. coli	σ_{4}^{K}	σ^{E}_{4}	3HUG	0.78			
ASD							
Rhodobacter sphearoides	RskA	ChrR	2Z2S	1.87			
M. tuberculosis	RskA	RslA	3HUG	1.18			

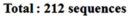
Supporting Table S2: Comparison of the $\sigma^{K}/RskA$ complex with other $\sigma/anti-\sigma$ structures.

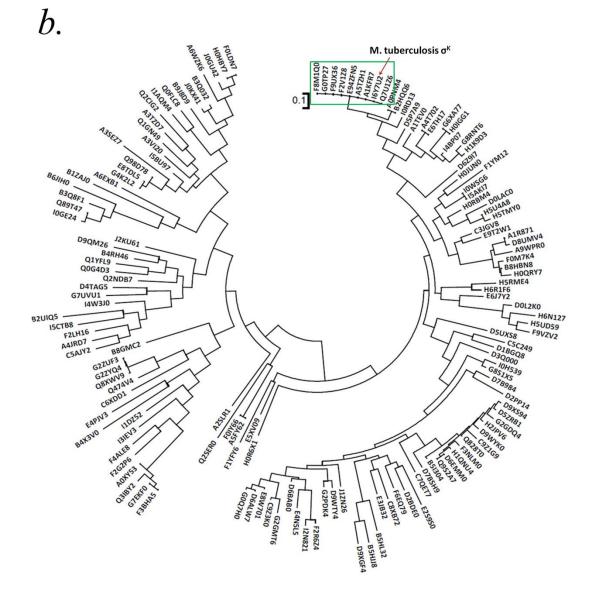
Supporting Table S3: Comparison of the interface in σ /anti- σ complexes

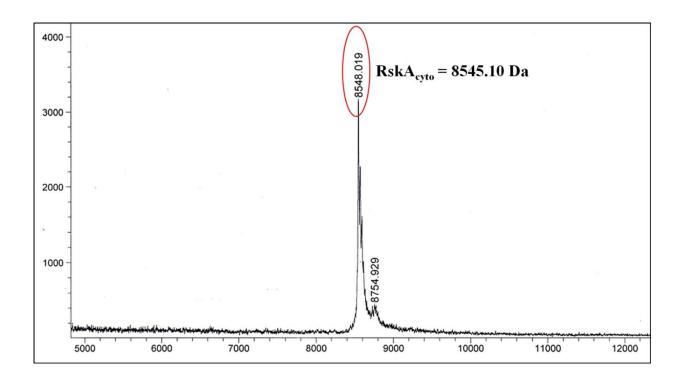

Organism	Name	PDB ID	Interface area (Å ²)	∆G kCal/mol
M. tuberculosis	$\sigma^{K}/RskA_{cyto}$	4NQW	2046.9	-31.0
R. sphaeroides	σ ^E /ChrR	2Z2S	2638.7	-34.6
E. coli	$\sigma^{E}/RseA$	10R7	2771.0	-27.0
Aquifex aeolicus	σ^{28} /FlgM	1RP3	1986.8	-30.5
M. tuberculosis	$\sigma^{L}_{4}/RslA$	3HUG	1339.2	-16.2
B. subtilis	σ ^F /SpoIIAB	1L0O	1047.6	-11.9

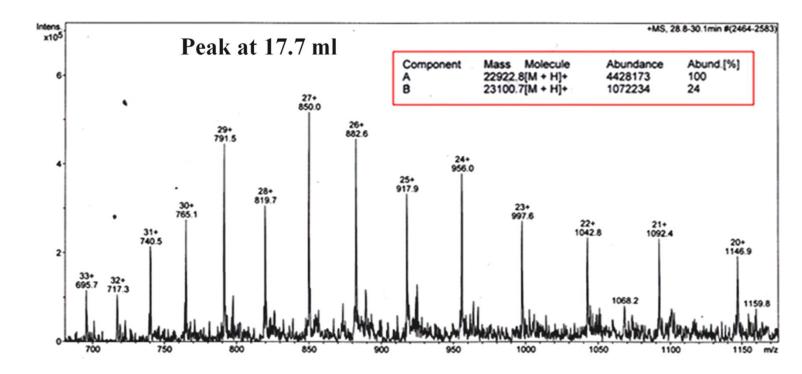
Footnote: This analysis was performed using the Protein interfaces, surfaces and assemblies (PISA) at the European Bioinformatics Institute (<u>http://www.ebi.ac.uk/pdbe/prot_int/pistart.html</u>) **Reference:** E. Krissinel and K. Henrick (2007).*Inference of macromolecular assemblies from crystalline state.* J. Mol. Biol. **372**, 774—797 (18).

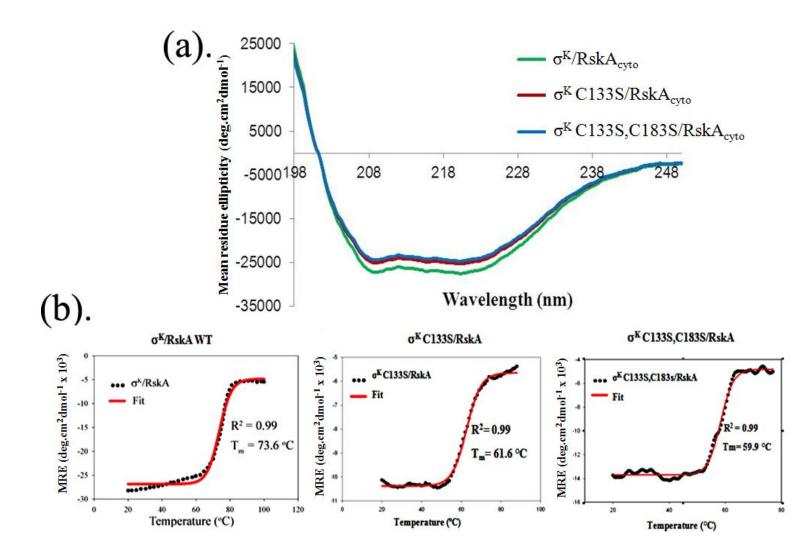

Supporting Table S4: Dissociation constants for $\sigma^{K}{}_{4}$ interactions with the -35 promoter

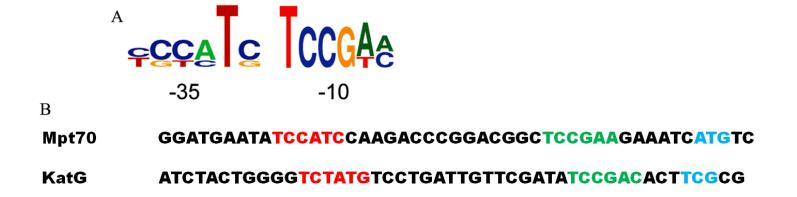

Gene	kD (nM)
katG	18.0 ± 0.6
katG (1mM TCEP)	15.6 ± 0.9
mpt70	21.6 ± 0.01
mpt70 (1mM TCEP)	20.8 ± 0.1


DNA of *katG* and *mpt70*


Supporting Figure S1: A and B. Mass spectrometric profile of $\sigma^{K}/RskA_{cyto}$ complex. C and D. Iodoacetamide labeling followed by mass spectrometry confirmed that Cysteine residues in σ^{K}_{4} are disulfide bonded in the freshly purified $\sigma^{K}/RskA_{cyto}$ complex. E and F. Iodoacetamide labeling followed by mass spectrometry after reducing the $\sigma^{K}/RskA_{cyto}$ protein sample with 1mM TCEP.




Supporting Figure S2: (a.) The disulfide bonding cysteines (C133 and C183 in σ^{K_4}) are conserved across σ factors from diverse organisms. This analysis is based on 212 protein sequences (sequence identity >27%). (b.) A cladogram based on neighbor-joining method was constructed for all sequences that had the conserved disulfide forming cysteines (MEGA5 server (Tamura *et al.*, 2011))


Supporting Figure S3: Maldi-TOF mass spectrum of the peak eluting at 20.2 ml (size exclusion chromatography- more details in methods) after treating the $\sigma^{K}/RskA_{cyto}$ complex with a reducing agent. The mass corresponds to $RskA_{cyto}$.

Supporting Figure S4: Mass spectrogram for the sample eluting at 17ml. In the case of $\sigma^{K}(C133S,C183S)/RskA_{cyto}$ complex, this is consistent with the molecular weight of the $\sigma^{K}(C133S,C183S)$ protein.

Supporting Figure S5. (a). CD spectra of wild type $\sigma^{K}/RskA_{cyto}$ and the $\sigma^{K}(C133S)/RskA_{cyto}$, $\sigma^{K}(C183S)/RskA_{cyto}$ and $\sigma^{K}(C133S, C183S)/RskA_{cyto}$ mutants. (b). The $\sigma^{K}/RskA_{cyto}$ complex is highly stable (T_m *ca* 73.6°C). Thermal denaturation profiles for $\sigma^{K}(C133S)/RskA_{cyto}$ (61.6°C) and $\sigma^{K}(C133S, C183S)/RskA_{cyto}$ (59.9°C) shows the cysteines are important for the structural stability of the $\sigma^{K}/RskA_{cyto}$ complex.

Supporting Figure S6: (A). The consensus sequence of the -10 and -35 promoter DNA element for genes in the σ^{K} regulon. (B). The promoter DNA sequence for the *mpt70* and *katG* genes used for the fluorescence anisotropy experiments.