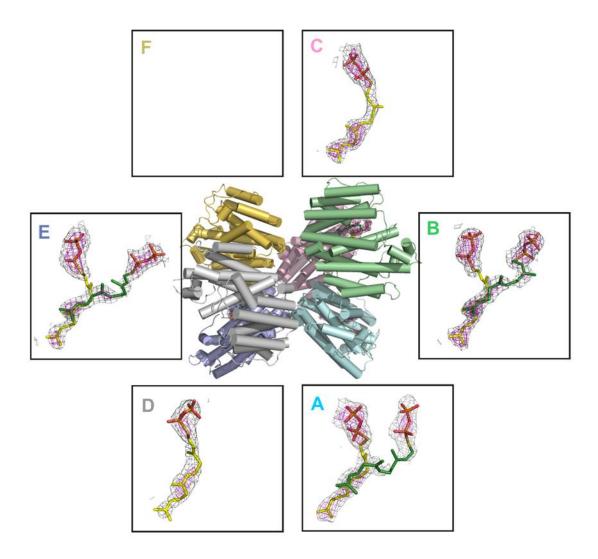
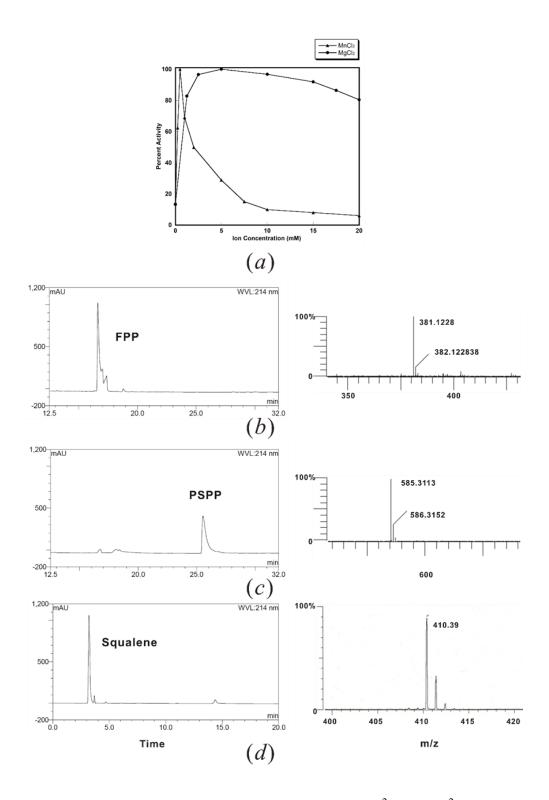

## Supplementary Material

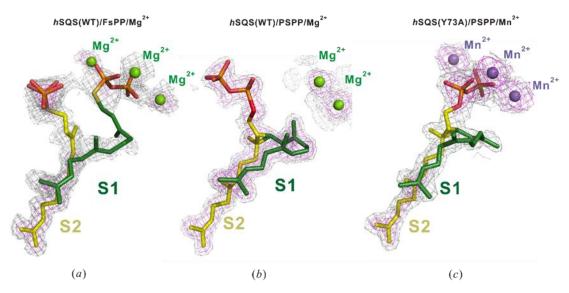
**Supplementary Table S1.** Primers used to construct human SQS mutants in this study.


| Mutant name | Primer sequence                                          |  |
|-------------|----------------------------------------------------------|--|
| R52A        | 5'-GTATCTCAATCAGACCAGTGCCAGTTTCGCAGCTGTTATCC-3'          |  |
| R52E        | 5'-GTATCTCAATCAGACCAGTGAGAGTTTCGCAGCTGTTATCC-3'          |  |
| Y73A        | 5'-CGCAACGCAGTGTGCATATTTGCTCTGGTTCTCCGAGCTCTGGA-3'       |  |
| R77A        | 5'-ATATTTTATCTGGTTCTCGCGGCTCTGGACACACTGGA-3'             |  |
| K117A       | 5'-GAGAGCAAGGAGGCAGATCGCCAGGTGCT-3'                      |  |
| Q212L       | 5'-TCTATGGGCCTGTTTCTGCTGAACACA AACATCATCCG-3'            |  |
| Q212N       | 5'-TCTATGGGCCTGTTTCTGAATAAAACAAACATCATCCG-3'             |  |
| Q212E       | 5'-TCTATGGGCCTGTTTCTGGAGAAAACAAACATCATCCG-3'             |  |
| R218A       | 5'-CAGAAAACAAACATCATCGCGGACTATCTGGAAGACCA -3'            |  |
| R228A       | 5'-GAAGACCAGCAAGGAGGAGCAGAGTTCTGGCCTCAAGA-3'             |  |
| F288A       | 5'-GAAACCAGAGTGTGTTTAACGCCTGTGCTATTCCACAGGTG-3'          |  |
| F288L       | 5'-GAAACCAGAGTGTGTTTAACCTCTGTGCTATTCCACAGGTGATG-3'       |  |
| K315E       | 5'-GGTGTTCAAAGGGGCAGTGGAGATTCGGAAAGGGCAAGC -3'           |  |
| R317E       | 5'-CAAAGGGGCAGTGAAGATTGAGAAAGGGCAAGCAGTGACCC -3'         |  |
| K315E+R317E | 5'-GGTGTTCAAAGGGGCAGTGGAGATTGAGAAAGGGCAAGCAGTGACCC-3'    |  |
| K318E       | 5'-GGGGCAGTGAAGATTCGGGAAGGGCAAGCAGTGACCCTG -3'           |  |
| K315E+K318E | 5'-GGTGTTCAAAGGGGCAGTGGAGATTCGGGAAGGGCAAGCAGTGACCCTG -3' |  |

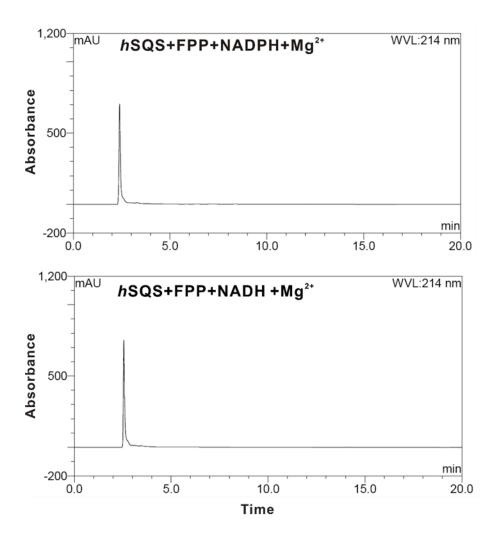
|             | %          |             |
|-------------|------------|-------------|
| Human SQS   | First-step | Second-step |
| Wild type   | 100        | 100         |
| R52A        | 59.7       | 37.8        |
| R52E        | 91.7       | 9.1         |
| Y73A        | N/A        | 9.7         |
| R77A        | 55.5       | 14.5        |
| K117A       | N/A        | 100         |
| Q212L       | N/A        | 4           |
| Q212N       | 53.1       | 8.1         |
| Q212E       | N/A        | 85.4        |
| R218A       | 93.6       | 22.4        |
| R228A       | 85.3       | 70.2        |
| F288L       | N/A        | 53.2        |
| F288A       | N/A        | 22.7        |
| K315E       | 89.6       | 40.5        |
| R317E       | N/A        | 82.6        |
| K318E       | 93.6       | 86.9        |
| K315E/R317E | N/A        | 9.2         |
| K315E/K318E | 94.1       | 7.4         |


**Supplementary Table S2.** Effects of mutation on retained activity of *h*SQS in this study.

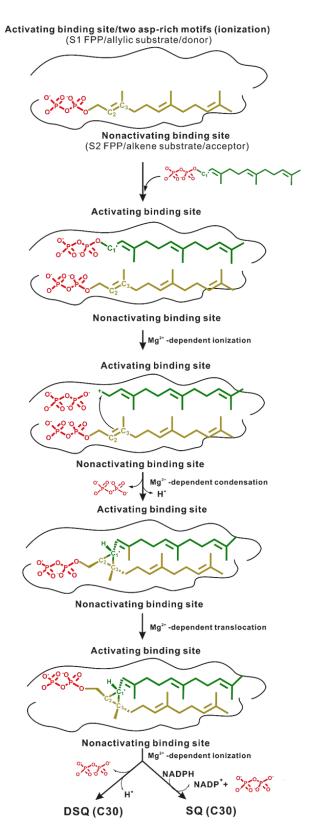



**Supplementary Fig. S1.** (*a*) Stereo view of the alignment of *h*SQS with *Sa*CrtM, indicating the highly conserved regions are located at Regions I (red), II (magenta), and III (blue). Region IV (green), constituted NAD(P)H binding site, is an unique and conserved feature among SQSs and absent in *Sa*CrtM. The negative residues on both asp-rich motifs are shown in ball and stick. *h*SQS and *Sa*CrtM are presented in palecyan and yellow, respectively. (*b*) Alignment of SQS protein sequences. The protein sequences for human (AAP36671), rat (AAA42179), yeast (CAA42583), and *T. cruzi* (XP806809) were aligned using Clustal program with manual adjustment. Identities among the five species are marked by (\*) while homologous are indicated by (.) and conserved substitution by (:). Four conserved regions are labeled in boxes. Two DXXED motifs as the substrate binding sites are shown. The circles indicate the residues involved in NADPH recognition.




**Supplementary Fig. S2.** The final 2Fo-Fc electron densities map (gray contoured at  $1.0\sigma$ , red at  $2.0\sigma$ ) for FsPP without Mg<sup>2+</sup> in the active site. FsPP in S1 site is labeled in green, FsPP in S2 site is labeled in yellow. In their active sites, two C<sub>15</sub>-FsPP molecules are in chains A, B and E; one molecule in chains C and D; and chain F is empty.




**Supplementary Fig. S3.** Activity Assays. (*a*) Both  $Mg^{2+}$  and  $Mn^{2+}$  stimulate enzyme activity. Reverse phase HPLC trace of FPP (*b*) and PSPP (*c*). The retention times of FPP and PSPP were 17.5 and 27.0 min. (*d*) Normal phase HPLC trace of squalene. The retention time of squalene was 3 min. Mass spectral analysis of FPP, PSPP and squalene are shown the molecular ions at m/z 381, 585 and 410, respectively.



**Supplementary Fig. S4.** Substrate models in the active site. The  $2F_o$ - $F_c$  electron density maps for all ligands are contoured 1 $\sigma$  (in gray) and 3 $\sigma$  (in red). (*a*) FsPP with Mg<sup>2+</sup>. (*b*) PSPP with Mg<sup>2+</sup>. (*c*) PSPP with Mn<sup>2+</sup>. The catalytic Mg<sup>2+</sup> and Mn<sup>2+</sup> are shown as green and purple balls, respectively.



Supplementary Fig. S5. hSQS not only uses NADPH but NADH as reducing agents.



**Supplementary Fig. S6.** Proposed cartoon model of ordered incorporation of substrates in *h*SQS and *Sa*CrtM.