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1 Study of τ relative as a function of δtrelativemax

In section 4.1 of the article, we introduce a quick estimation method of τ relative

using δtrelativemax estimate. Let us name the function f , which gives for each
δtrelativemax the corresponding τ relative. There is no analytical expression of f as its
values depend on η̂h. However, some characteristics of f can be derived.
In our analysis we deduce the δtrelativemax values for a sampling of τ relative. δtrelativemax

is obtained by minimization of the function G to satisfy (21) for any selected
τ relative

G(δtrelativemax ) =

(

η̂h(δt
relative
max , τ relative)− τ relative
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(i)

We introduce g, the function which for each τ relative gives δtrelativemax . The (τ relative,
δtrelativemax ) pairs are used to plot g in the interval ]0,+∞[.
The curve in (Fig. 1) shows that g is continuous and can be differentiated.
Moreover, we note, for all τ relative ∈]0,+∞[, δtrelativemax < τ relative.
The following relation between τ relative and δtrelativemax can be derived from equa-
tions (15) and (21).

(
∫ +∞

y=U

e−y2

dy

)

eU
2

=
τ relative
√
2
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1
√
2
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1

τ relative
− δtrelativemax

)

(ii)

Differentiating (ii) as a function of τ relative gives the following differential equa-
tion

g′(τ relative) =
1

τ relative

(

1

g(τ relative)
−

1

τ relative

)

(iii)

We notice that g(τ relative) < τ relative implies g′(τ relative) > 0, for all τ relative ∈
]0,+∞[. Thus, g is monotonically increasing and reversible, and f = g−1 exists.
To the best of our knowledge this non-linear first-order differential equation can
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not be solved. Nevertheless, (ii) and (iii) can be used to study f behavior at
+∞ and 0+.

Figure 1: Plot of τ relative vs. δtrelativemax . The orange straight line corresponds to
the identity function.
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1.1 Asymptotic behavior of f at +∞
We remark that when τ −→ +∞, η̂h approaches a cumulative Gaussian prob-
ability density function (c.g.f.). A c.g.f. is monotonically increasing with its
maximum at +∞. Therefore, when τ relative −→ +∞, δrelativemax −→ +∞.

We want to know the asymptotic behavior of g at +∞ and, by the same way, of
its reciprocal function f . There are three possible g asymptotic behaviors when
τ relative −→ +∞ [1, 5, 4],
1)g(τ relative) ∈ o

+∞

(τ relative)

2)g(τ relative) ∈ Θ
+∞

(τ relative)

3)g(τ relative) ∈ ω
+∞

(τ relative)

1) If we assume g(τ relative) ∈ o
+∞

(τ relative), which means g(τ relative) ≪ τ relative

when τ relative −→ +∞, the differential equation (iii) implies the following rela-
tion

g(τ relative)g′(τ relative) =
1

τ relative
+ o

+∞

(

1

τ relative

)

(iv)

and also,

2g(τ relative)g′(τ relative) ∼
+∞

2

τ relative
(v)

Let us introduce the following functions defined on ]0;+∞[ as

F1(τ
relative) = g(τ relative)2 and G1(τ

relative) = ln(τ relative) (vi)

When τ relative −→ +∞, the both functions tend to +∞ and also

lim
+∞

F ′(τ relative)
G′(τ relative) = lim

+∞

g(τ relative)g′(τ relative)
1/τ relative = 1

Then, we can apply l’Hôpital’s rule [2], lim
+∞

F ′(τ relative)
G′(τ relative)

= lim
+∞

F (τ relative)
G(τ relative)

= 1

Therefore, by definition of the equivalence of two functions at +∞,

g(τ relative)2 ∼
+∞

2 ln(τ relative) (vii)

Moreover, the function Square-Root, sqrt, defined on [0,+∞[, is monotonic and
sqrt′(x)
sqrt(x) = O

+∞

(1/x) and we know g(τ relative)2−→
+∞

+∞.

We can apply Entringer’s theorem [3] and obtain,

g(τ relative) ∼
+∞

√

2 ln(τ relative) (viii)
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2) If we assume g(τ relative) ∈ Θ(τ relative), g and the identity function share the
same order of magnitude at +∞. We already know g(τ relative) < τ relative and so,
by definition of “Big omega”, there is k1 ∈]0,+∞[ such that k1τ

relative≤g(τ relative)
at +∞.
Thus,

k1τ
relative≤g(τ relative)<τ relative (ix)

Using the differential equation (iii), we obtain at +∞

0 < g′(τ relative) ≤
(

1

k1
− 1

)

1

τ relative
2 (x)

This satisfies the definition of “Big omicron” relation,

g′(τ relative) ∈ O
+∞

(

1

τ relative
2

)

(xi)

We note lim
+∞

1
τ relative2

= 0, and so lim
+∞

g′(τ relative) = 0.

Let us define the functions F2 and G2 on ]0;+∞[ as

F2(τ
relative) = g(τ relative) and G2(τ

relative) = τ relative (xii)

We note F (τ relative)−→
+∞

+∞, G(τ relative)−→
+∞

+∞ and

lim
+∞

F ′

2(τ
relative)

G′

2
(τ relative)

= lim
+∞

g′(τ relative) = 0

If we apply once again l’Hôpital’s rule [2], we obtain

lim
+∞

F2(τ
relative)

G2(τ relative) = lim
+∞

F ′

2(τ
relative)

G′

2
(τ relative) = lim

+∞

g′(τ relative) = 0

This implies F2 is dominated by G2 at +∞ or g(τ relative) ∈ o
+∞

(τ relative).

There is a contradiction with the initial assumption: g(τ relative) ∈ Θ
+∞

(τ relative).

3) If we assume g(τ relative) ∈ ω
+∞

(τ relative), which means, when

τ relative −→ +∞, g(τ relative) ≫ τ relative, this implies

g′(τ relative) = −
1

τ relative
2 + o

+∞

(

1

τ relative
2

)

(xiii)

and

g′(τ relative) = O
+∞

(

1

τ relative
2

)

(xiv)

Using the same functions than in the previous case, we obtain a contradiction
with the initial assumption.

Finally, the only possible behavior is the first one, g(τ relative) ∼
+∞

√

ln(τ relative
2
).

4



More information can be obtained using Gauss error function properties.
We know δrelativemax −→

+∞

+∞ and U−→
+∞

−∞ (ii).

The complementary Gauss error function, noted erfc, is defined as

erfc(x) = 1− erf (x) =
2
√
π

∫ +∞

y=x

e−y2

dy (xv)

and its asymptotic expansion at +∞ is known

√
πxex

2

erfc(x) ∼
+∞

1 +

+∞
∑

m=1

(−1)m(2m− 1)!!

(2x2)m
(xvi)

So, at the zero order, √
πxex

2

erfc(x) ∼
+∞

1 (xvii)

Moreover,

erfc(−x) = 1− erf(−x) = 1 + erf (x) = 2− erfc(x) (xviii)

Therefore,

(
∫ +∞

y=U

e−y2

dy

)

eU
2

=

√
π

2

[

2−
∫ +∞

y=−U

e−y2

dy

]

eU
2

=
√
πeU

2

−
√
π

2

(
∫ +∞

y=−U

e−y2

dy

)

eU
2

=
√
πeU

2

−
√
π

2

(

1
√
π(−U)

)

+ O
+∞

(

1

U3

)

∼
+∞

√
πeU

2

(xix)

We can expand the exponential factor, using the expression of U (ii),

√
πeU

2

=
√
π

[

e

(

1

2τrelative2

)

e

(

δt
relative
max

2

2

)

e

(

δt
relative
max

τrelative

)
]

(xx)

We know 1
2τ2−→

+∞

0 and the asymptotic behavior of δtrelativemax ,

δtrelativemax

τ relative ∼
+∞

√
ln(τ relative2)

τ relative −→
+∞

0

Thus,

√
πeU

2

∼
+∞

√
πe

(

δt
relative
max

2

2

)

(xxi)

Using (ii), (xix) and (xxi), we obtain the following equation when τ relative −→
+∞

τ relative ∼
+∞

√
2πe

(

δt
relative
max

2

2

)

(xxii)

5



and, by the same way, the asymptotic behavior of f when δtrelativemax −→ +∞

f(δtrelativemax ) ∼
+∞

√
2πe

(

δt
relative
max

2

2

)

(xxiii)

1.2 Asymptotic behavior of f at 0+

In section 2.1 of the article, we show η̂h is related to an Exponentially Modified
Gaussian, E.M.G. For δtrelative ∈ ]−∞,+∞[,

η̂h(δt
relative) = Khτ

relativeEMG(δtrelative) (xxiv)

Considering the expression (xxiv), for all τrelative ∈]0,+∞[, η̂h and EMG share
the same maximum location δtrelativemax

δtrelativemax η̂h
= δtrelativemax EMG (xxv)

Moreover, when τ relative = 0, an E.M.G. function becomes a Gaussian function,
while δtrelativemax η̂h

is a constant function set to zero and consequently has no
maximum.
By continuity, δtrelativemax η̂h

(0+) can be computed

lim
0+

δtrelativemax η̂h
(τ relative) = lim

0+
δtrelativemax EMG(τ relative) = δtrelativemax EMG(0) = 0

(xxvi)
The behavior of g at 0+ can be studied using the same method than at +∞.
There are three possibilities of behavior [1, 5, 4].

1) g(τ relative) = o
0+
(τ relative) which means g(τ relative) ≪ τ relative when τ relative −→

0+, this implies considering equation (iii)

2g(τ relative)g′(τ relative)−
2

τ relative
= o

0+

(

1

τ relative

)

(xxvii)

Let us define the functions F3 and G3 as

F3(τ
relative) =2g(τ relative)

2
− 2ln (τ relative)

and

G3(τ
relative) =ln (τ relative)

(xxviii)

When τ relative −→ 0+, g(τ relative) −→ 0+ and so, F3(τ
relative) −→ +∞ and

G3(τ
relative) −→ −∞

Moreover, lim
0+

F ′

3(τ
relative)

G′

3
(τ relative)

= 0 and lim
0+

F3(τ
relative)

G3(τ relative)
= −1
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We can apply l’Hôpital’s rule [2], which implies lim
0+

F3(τ
relative)

G3(τ relative)
= lim

0+

F ′

3(τ
relative)

G′

3
(τ relative)

which means 0 = −1. There is a contradiction.

2) g(τ relative) = ω
0+
(τ relative) which means g(τ relative) ≫ τ relative when τ relative −→

0+, this implies

g′(τ relative) +
1

τ relative
2 = o

0+

(

1

τ relative
2

)

(xxix)

Let us introduce the functions F4 and G4

F4(τ
relative) =g(τ relative)−

1

τ relative

and

G4(τ
relative) =−

1

τ relative

(xxx)

When τ relative −→ 0+, g(τ relative) −→ 0+ and so, F4(τ
relative) −→ −∞ and

G4(τ
relative) −→ −∞

Moreover, lim
0+

F ′

4(τ
relative)

G′

4
(τ relative) = 0 and lim

0+

F4(τ
relative)

G4(τ relative) = 1

Using l’Hôpital’s rule [2], the both limits should be equal. There is a contradic-
tion again.

3) The only possible behavior is g(τ relative) ∈ Θ(τ relative)
When τ relative −→ 0+, g has the order of magnitude than the identity function.

Like at +∞, an equivalence relation for δtrelativemax can be obtained at 0+.

When τ relative −→ 0+, δtrelativemax −→ 0+ and U −→ +∞.
Therefore, when τ relative −→ 0+,

(
∫ +∞

y=U

e−y2

dy

)

eU
2

=

√
π

2
eU

2

erfc(U)

=

√
π

2

(

1
√
πU

)[

1−
1

2U2
+ o

0+

(

1

U3

)]
(xxxi)

We show previously, δtrelativemax ∈ Θ
0+
(τ relative) at 0+. The Taylor expansion of the

function τ relative −→ U−1 can be done relatively to τ relative and δtrelativemax , which
share the same order of magnitude.

1

U
=

√
2τ relative

∞
∑

k=0

(τ relativeδtrelativemax )k (xxxii)
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1

U
=

√
2τ relative

(

1 + τ relativeδtrelativemax

)

+O((τ relative; δt relativemax )4) (xxxiii)

Note: O((τ relative; δt relativemax )4) means the function can be any ones defined as:

τ relative −→ τ relative
k
δtrelativemax

4−k
with k ∈ [0, 1, 2, 3, 4].

Then, the expansion (xxxi) becomes
(
∫ +∞

y=U

e−y2

dy

)

eU
2

=
1
√
2

(

τ relative + τ relative
2
δtrelativemax − τ relative

3
)
)

+O((τ relative; δt relativemax )4)

(xxxiv)
which gives using the relation (ii),

τ relative
√
2

=
1
√
2

(

τ relative + τ relative
2
δtrelativemax − τ relative

3
)
)

+O((τ relative; δt relativemax )4)

(xxxv)
After reducing the expression, we obtain

τ relative = δtrelativemax + O
0+
((τ relative; δtrelativemax )2) (xxxvi)

Finally, when τ relative −→ 0+

τ relativemax ∼
0+
δtrelativemax (xxxvii)

which implies, when δtrelativemax −→ 0+

f(δtrelativemax )∼
0+
δtrelativemax (xxxviii)
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