Supplementary Materials

High Resolution Crystal Structure of Copper Amine Oxidase from *Arthrobacter globiformis*: Assignment of Bound Diatomic Molecules to O₂

Takeshi Murakawa, Hideyuki Hayashi, Tomoko Sunami, Kazuo Kurihara, Taro Tamada, Ryota Kuroki, Mamoru Suzuki, Katsuyuki Tanizawa, and Toshihide Okajima

Re-data-collection of AGAO_{RT} and AGAO_{GL}

To accurately compare the crystal parameters, X-ray diffraction data of $AGAO_{RT}$ and $AGAO_{GL}$ were recollected using the same detector and beamline station as those for $APAO_{PG}$. AGAO crystals were obtained by the micro-dialysis method as described in the main text. For $AGAO_{GL}$, after sufficient growth of the crystals, the dialysis buttons were transferred into new reservoirs where solutions were supplemented with 45% (v/v) glycerol as a cryoprotectant and kept at 16 °C for 24 h for cryo-protection. The crystals were mounted on thin nylon loops (ϕ , 0.4–0.5 mm) and frozen by flash cooling to 100 K in a cold N₂ gas stream. For AGAO_{RT}, the single crystal generated in a normal atmosphere was mounted in a quartz capillary.

X-ray diffraction data were collected with the synchrotron X-radiation ($\lambda = 0.9$ Å) using an MX-225HE detector (Rayonix, Evanston, IL, USA) in the beamline station BL44XU at SPring-8 (Hyogo, Japan) at 100 K and 298 K for AGAO_{GL} and AGAO_{RT}, respectively. The data was collected with a single crystal-to-detector distance, 160 mm. The sets of the diffraction data collected for the crystal were processed and scaled using HKL2000. Both AGAO_{GL} and AGAO_{RT} were found to belong to the same space group *C*2 with cell dimensions as reported previously (1IU7 and 1AV4, respectively). The crystal parameters of data collection are summarized in Supplementary Table S1.

AGAO crystals (PDB code)	AGAO _{RT} ^a	$AGAO_{GL}^{a}$	AGAO _{GL2} (1W6G)	AGAO _{PG} (3WA2)
Data collection temperature	298 K	100 K	100 K	100 K
Crystallization method	microdialysis	microdialysis	hanging drop	microdialysis
Composition of the crystallization solution	25 mM HEPES, pH 6.8, 1.05 M tartrate NaK	25 mM HEPES, pH 6.8, 1.05 M tartrate NaK	100 mM MES, pH 6.5, 1.6 M ammonium sulfate, 12% (v/v) dioxane	25 mM HEPES, pH 6.8, 1.05 M tartrate NaK
Cryoprotectant	none	45% (v/v) glycerol	30% (v/v) glycerol	35% (v/v) PEG200
Resolution (Å)	2.11	1.70	1.55	1.08
Space group	<i>C</i> 2	<i>C</i> 2	<i>C</i> 2	<i>C</i> 2
Unit cell dimensions				
<i>a, b, c</i> (Å)	158.4, 64.8, 93.3	192.9, 62.8, 158.0	157.8, 63.2, 92.0	157.7, 62.4, 92.1
β (deg)	112.5	117.6	112.0	112.1
Number of molecules per asymmetric unit	1	2	1	1
Cell volume/subunit (Å ³)	$885,000(100)^b$	848,000 (95.8) ^b	851,000 (96.2) ^b	840,000 (94.9) ^b
Solvent content (%)	60.8	59.1	59.2	58.7
<i>B</i> factor from Wilson plot (\AA^2)	23.7	18.0	19.7	9.9

Table S1. Conditions and parameters of AGAO crystals belonging to the small C2 cells.	

 $\frac{1}{a}$ Recollected data (not deposited to PDB). ^bPercent cell volume relative to that of AGAO_{RT} is shown in parenthesis.

Figure S1. X-ray crystal structure of AGAO. (*a*) Overall shape of the AGAO dimer (1IU7) is shown as gray shade. Domains are depicted with a colored ribbon model: D2, sky blue and faded sky blue; D3, pink and faded pink; D4, green and faded green; and domain-connecting loops, gray. (*b*) The model of (*a*) is sliced so that the cross section is across the amine channels and the inter-subunit space, the 'inland lake'. (*c*) The active site residues are shown by stick models with ribbon models of nearby main-chains and surfaces of the amine channel and the inland lake. A brown circle represents the anteroom proposed previously as a dioxygen- (pre-) binding site (Johnson *et al.*, 2007).

Figure S2. Distribution of isotropic *B* factors. The average *B* factors of the main chain atoms in AGAO_{GL} and AGAO_{PG} are plotted with black and red lines, respectively, against the residue number. The horizontal lines indicate the average *B* factors of AGAO_{GL} (black) and AGAO_{PG} (red) within D2, D3, and D4 domains.

Figure S3. Na⁺-binding site of AGAO_{PG}. (c) The green and cyan spheres represent a Na⁺ ion and a water molecule, respectively. Broken lines and numbers indicate the coordination and distances (in Å) from the Na⁺ ion. An $F_0 - F_c$ omit map calculated for Na⁺ ion was contoured at +5 σ (green mesh).

Figure S4. Stereo diagram of the electron density map of TPQ. The refined model of TPQ382 is shown with the $F_{o} - F_{c}$ omit map contoured at 6σ with sky blue mesh.

Figure S5. Stereo diagram of the wedge-shaped movement of the TPQ ring upon substrate Schiff-base formation during catalysis. Stick models of the active-site residues around TPQ382 of $AGAO_{PG}$ (gray) are shown with the substrate Schiff-base (SSB, pink) formed with phenylethylamine (2CWU) viewed from the direction of the C4 hydroxyl group of TPQ. A wedge-shaped space between the TPQ rings is represented by a pink dotted line triangle. A hydrogen bond between the side chain ND2 atom of Asn381 and the main chain carbonyl group of Val405 is indicated by a black dotted line.

Figure S6. Alternative conformers of $AGAO_{PG}$. Residues with alternative conformers are shown as stick models on the overall main chain models in light blue, cyan, and dark blue for conformers *a*, *b*, and *c*, respectively.

Figure S7. Conformations of the residues constituting the anteroom. Stick models of the anteroom residues (sky blue) in the Xe (blue sphere)-bound AGAO (1RJO) are overlaid with the corresponding residues (white) in $AGAO_{PG}$.

Figure S8. Locations of identified O_2 -like diatomic molecules and Xe atoms found previously in AGAO (Duff *et al.*, 2004). Oxy1–4 molecules (red spheres) and xenon atoms (lime spheres) of Xe-bound AGAO (1RJO) are depicted on the AGAO_{PG} overall structure (this study).