Supplementary Material

The structure of a glycoside hydrolase family 81 endo- β-1,3-glucanase

Peng Zhou, ${ }^{\text {a }} \cdot$ Zhongzhou Chen, $^{\text {b }} \cdot{ }^{\text {Qiaojuan Yan, }}{ }^{\text {c }} \cdot$ Shaoqing Yang, $^{\text {a }} \cdot$ Rolf Hilgenfeld ${ }^{\text {d }}$ and Zhengqiang Jiang ${ }^{\text {a * }}$
${ }^{\text {a }}$ Department of Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China, ${ }^{\text {b }}$ State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China, ${ }^{\text {c }}$ Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China, and ${ }^{\text {d }}$ Institute of Biochemistry, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany

Table S1 Primers used in the construction of RmLam81A gene

Primers	Primer sequence ($\left.5^{\prime}-3\right)^{\text {a }}$	Bases (bp)
DP1	TAYAAYGAYCAYCAYTAYCA	20
DP2	TCYTGRTCNCKNCCRTC	17
5'GSP	CCGTCTGGCTTGATGCCTCCTG	22
5'NGSP	TCGCCGTCGTTTGCGTTGTTGA	22
3'GSP	CACTTGGACCCAACATGGAATG	22
3'NGSP	AACAACGCAAACGACGGCGACGAG	24
RmLam81ABamHI ${ }^{\text {b }}$	GCCATAGGATCCCAGAGTACAAGTGATGGAGACGAT	36
RmLam81AXhoI ${ }^{\text {b }}$	CCGCTCGAGTTAATAAATACGATGCTTGAGATTAAAGGG	39
${ }^{\text {a }} \mathrm{K}=\mathrm{G} / \mathrm{T}, \mathrm{N}=\mathrm{A} / \mathrm{T} / \mathrm{C} / \mathrm{G}, \mathrm{R}=\mathrm{A} / \mathrm{G}, \mathrm{Y}=\mathrm{C} / \mathrm{T}$.		

Figure S1

Microphotographs of RmLam81A crystals Form I (a) and Form II (b) obtained from conditions: $160 \mathrm{~m} M \mathrm{Li}_{2} \mathrm{SO}_{4}, 24 \%(w / v)$ PEG4000, $80 \mathrm{~m} M$ Tris-HCl pH 8.5 and $6 \%(v / v)$ MPD; $24 \%(w / v)$ PEG4000, $80 \mathrm{~m} M$ Tris-HCl pH 8.5 and $6 \%(v / v)$ MPD. The approximate dimensions of Form I and Form II were $0.5 \times 0.2 \times 0.02$ and $0.4 \times 0.2 \times 0.2 \mathrm{~mm}$, respectively.

Figure S2

The asymmetric units of RmLam81A in Form I (a) and Form II (b). In both structures there are two protein molecules in the asymmetric unit, labeled A and B. Molecule A are shown in purple and Molecule B in cyan. Tris, MPD and sulfate ion are shown as red sticks. All figures were produced using PyMol (http://www.pymol.org; V. 1.3; Schrödinger LLC).

Figure S3

Nucleotide and deduced amino acid sequences of the full-length cDNA and flanking regions of RmLam81A from Rhizomucor miehei. The translational initiation codon, ATG and termination codon, TAA are boxed. Six intron sequences are shown in lower case letters with dotted underline. A poly (A+) is double lined. Conceptual translation of the ORF to amino acids is shown in a one-letter code below the respective codon. A putative signal peptide is underlined. The asterisk indicates the stop codon. Three N-glycosylation sites are indicated by underline and the Asp residues are highlighted in grey.

Figure S4

Superposition of the present four structures of RmLam81A. Colour code: Form I molecule A,
blue; molecule B, green; Form II crystal structure molecule A, red; molecule B, orange. Loop1:
$\beta 3-\beta 4$ (Leu71-Pro78), Loop2: $\beta 5-\beta 6$ (Ser92-Gly105) and Loop3: $\beta 13-\beta 14$ (Glu187-Thr197).

All Figures were prepared with PyMOL (v.1.3; Schrödinger LLC).

(a)

(c)

(b)

(d)

Figure S5

Schematic representation of the interactions between the enzyme and (a) the primary Tris molecule (Tris1), (b) the second Tris molecule (Tris2), (c) MPD molecule and (d) sulfate ion. This picture was obtained using LigPlot (Wallace et al., 1995). The atoms involved in hydrogen bonds (with distances) or hydrophobic contacts are depicted.

