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Supplementary Material

Reminder A: the three-dimensional interference function

In order to calculate the integral

p(r)=p(e)= [e?"ds (Al)

|s|<D
one may use the spherical symmetry of the resulted function and calculate its value along the

axis OZ. In the polar coordinates,
(rs) = zscosé (A2)

where @ is the angle between OZ and the vector s of the length s. Therefore,
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With d = D" and the interference function (Fig. 1a of the main text)

G, (£)=3 sin(7) ;; cos(?) (Ad)
we obtain
p() =G i) (AS)

Obviously, derivatives of this function can be calculated analytically as well.



Reminder B: some features of the interference function

Various characteristics of the interference function G,(t) = G, (2mrd ') are known.

a) Its first zero is r=4.49 corresponding to the distance r/d =0.715, and the first
minimum is at r/d =0.917. In crystallographic literature this was indicated, for

example by James (1948) and Stenkamp & Jensen (1984).

b) Its development in the Taylor series in the origin
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proves that G, (0)=1 and gives also an approximation

2
G,(t) = exp{— t—zj  with & =+5 (B2)
20,
or
(27x)? x?
plx)= exp(— 207 j = exp(— 207 j , (B3)
with
o, = I5_ 0.356 (B4)
2r

used by Vaguine et al. (1999).



¢) The inflection point of the Taylor expansion (B1) is defined by its second derivative
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giving

t= 1/7—0 ~2.160 (B6)
15

Converting this to x gives

x=— ~0344 (B7)
27

However, a direct calculation of the inflection point as a root of
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gives t =2.507 and x = 0.399 different from (B6) and (B7), respectively, as well as
from (B4).

d) One may note also that for the inflection point

G,(2.507) = 0.4991 = 0.5 = 0.5G,(0) (B9)



Reminder C: separation of two equal Gaussian peaks

It is known that a Gaussian peak

g(r)=e 2’ (C1)
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for r = 0. This means that two Gaussian peaks defined as
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are seen separately when the distance between them is larger than the limit value 20, i.e.

(C4)



