Acta Crystallographica Section D Biological Crystallography

High-Affinity Inhibitors of *Zymomonas mobilis* tRNA–Guanine Transglycosylase through Convergent Optimization

Supplementary Material

Luzi Jakob Barandun,^[a] Florian Immekus,^[b] Philipp C. Kohler,^[a] Tina Ritschel,^[b] Andreas Heine,^[b] Pierfrancesco Orlando,^[a] Gerhard Klebe,*^[b] and François Diederich*^[a]

[a] L. J. Barandun[†], Dr. P. C. Kohler[†], Dr. P. Orlando, Prof. Dr. F. Diederich Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg, HCI, CH-8093 Zurich (Switzerland) Fax: (+41) 44-632-1109 E-mail: diederich@org.chem.ethz.ch

[b] F. Immekus[†], Dr. T. Ritschel, Dr. A. Heine, Prof. Dr. G. Klebe Institut für Pharmazeutische Chemie Philipps-Universität Marburg, Marbacher Weg 6 35032 Marburg (Germany) Fax: (+49) 6421-282-8994 E-mail: klebe@mailer.uni-marburg.de

Current address of Dr. T. Ritschel: Computational Discovery & Design Group, CMBI Radboud University Medical Centre PO Box 9101 6500 HB Nijmegen

[†] These authors contributed equally to this work.

Table of Contents

List	t of Abbreviations	3
1	Figure S1: Crystal Structure with 6a	6
2	Figure S2: Crystal Structure with 6b	7
3	Figure S3: Crystal Structure with 6c	8
4	Figure S4: Crystal Structure with 7a	9
5	Figure S5: Crystal Structure with 7b	
6	Figure S6: Crystal Structure with 7c	11
7	Figure S7: Binding Mode of Mono-Functionalized <i>lin</i> -Benzo- hypoxanthines	12
8	Figure S8: Comparison Crystal Structures of 4a , b with 6a , b	
9	Figure S9: Cocrystallization versus Soaking of Ligands	14
10	Figure S10: Comparison of the Binding Mode of 4c and 6a	
11	Synthetic Details and Experimental Data	16
	11.1 Synthesis of the <i>lin</i> -Benzopurines	16
	11.2 Materials and Methods	17
	11.3 General Procedures (GPs)	20
	11.4 Compilation of ¹ H and ¹³ C NMR Data	22
	11.5 Experimental Data	
12	References	54
13	NMR Spectra	55

List of Abbreviations

3-HPA	3-hydroxypicolinic acid
9-BBN	9-borabicyclo[3.3.1]nonane
Å	Ångström (1 Å = 10^{-10} m)
aq.	aqueous
Ar	argon
ax	axial
br.	broad
c	centi-
С	Celsius
calcd	calculated
conc.	concentrated
d	doublet
decomp	decomposition
DEPT	distortionless enhancement by polarization transfer
DIAD	N,N-diisopropyl azodicarboxylate
DIPA	N,N-diisopropylamine
DME	1,2-dimethoxyethane
DMF	N,N-dimethylformamide
Me ₂ SO	dimethylsulfoxide
eq	equivalent; equatorial
ESI	electron spray ionization
Et	ethyl
EtOAc	ethyl acetate
eV	electron volt
FC	flash column chromatography
FT	fourier transform
g	gram(s)
GP	general procedure
h	hour(s)
HPLC	high performance liquid chromatography
HR	high resolution
HSQC	heteronuclear single quantum coherence

Hz	Hertz
IR	infrared spectroscopy
J	coupling constant (NMR) in Hz
L	liter
LC/MS	liquid chromatography/mass spectrometry
Lit.	literature (value)
М	Mega
М	molar
m	mili-; medium; meter; multiplet
m.p.	melting point
m/z	mass over charge ratio
MALDI	matrix-assisted laser desorption/ionization
Me	methyl
MeCN	acetonitrile
mg	milligram(s)
min	minute(s)
MPLC	medium pressure liquid chromatography
MS	mass spectrometry
n	nano
п	normal
NMR	nuclear magnetic resonance
org.	organic
PDB	protein data bank
ppm	parts per million
q	quartet
$R_{ m f}$	retention factor
RP	reverse phase
S	singlet; strong
sat.	saturated
sh.	shoulder
t	triplet
t	tert
TGT	tRNA-guanine transglycosylase

THF	tetrahydrofuran
TLC	thin-layer chromatography
TMS	tetramethylsilane
tRNA	transfer ribonucleic acid
UV	ultraviolet
W	weak
Z. mobilis	Zymomonas mobilis
δ	chemical shift in ppm relative to TMS
$\widetilde{ u}$	wavenumber(s)
0	degree
μm	micrometer(s)

The three-letter code for amino acids is used.

Supplementary Figure S1. Crystal Structure with 6a

Crystal structure of Z. mobilis TGT·**6a** (PDB code: 4gi4), obtained by soaking. Color code: C_{enzyme} gray, C_{ligand} green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as dashed lines and distances are given in Å. The substituent in the ribose-33 pocket is not resolved.

Supplementary Figure S2. Crystal Structure with 6b

Crystal structure of Z. mobilis TGT·**6b** (PDB code: 4gkt), obtained by cocrystallization. Color code: C_{enzyme} gray, C_{ligand} green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as black dashed lines and the C_{Ph} -H···O_{W2} interaction as green dashed line. Distances are given in Å.

Supplementary Figure S3. Crystal Structure with 6c

Crystal structure of Z. mobilis TGT·6c (PDB code: 4giy), obtained by cocrystallization. Color code: C_{enzyme} gray, C_{ligand} green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as black dashed lines and the C_{Ph} -H···O_{W2} interaction as green dashed line. Distances are given in Å.

Supplementary Figure S4: Crystal Structure with 7a

Crystal structure of Z. mobilis TGT·7a (PDB code: 4gg9), obtained by cocrystallization. Color code: C_{enzyme} gray, C_{ligand} green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as black dashed lines, the C_{Ph} -H···O_{W2} interaction as green dashed line, and the $S_{thiophene}$ ···O_{Tyr106} interaction as magenta dashed line. Distances are given in Å.

Supplementaary Figure S5. Crystal Structure with 7b

Crystal structure of *Z. mobilis* TGT·**7b** (PDB code: 4gh1), obtained by cocrystallization. The substituent in the ribose-33 pocket (morpholino) is not resolved. Color code: C_{enzyme} gray, C_{ligand} green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as dashed lines and distances are given in Å.

Supplementary Figure 6. Crystal Structure with 7c

Crystal structure of Z. mobilis TGT·7c (PDB code: 4gh3), obtained by cocrystallization. The substituents in the ribose-33 (phenyl) and ribose-34 (cyclohexyl) pocket are not resolved. Color code: C_{enzyme} gray, C_{ligand} green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as dashed lines and distances are given in Å.

Supplementary Figure S7. Binding Mode of Mono-Functionalized lin-

Binding mode of mono-functionalized *lin*-benzohypoxanthines. Crystal structure of *Z. mobilis* TGT with a) **2a** (PDB code: $3s1g^{[2]}$) and b) **5a** (PDB code: $3sm0^{[2]}$), both obtained by cocrystallization. Color code: C_{ligand} green, C_{enzyme} gray, O red, N blue. The pocket is indicated as gray surface. Selected water molecules are shown as red spheres, H-bonds as dashed lines.

Supplementary Figure 8. Comparison Crystal Structures of 4a,b with 6a,b

Comparison of the crystal structures of the bifunctionalized *lin*-benzoguanines **6a**,**b** (C green) with their mono-functionalized analogues **4a**,**b** (C cyan). a) **4a** (PDB code: 3ge7^[1]; soaking) and **6b** (PDB code: 4gkt; cocrystallization). b) **4b** (PDB code: 3gc4^[1]; soaking) and **6a** (PDB code: 4gi4; soaking). H-bonds shown as dashed lines, O red, N blue.

Supplementary Figure S9. Cocrystallization versus Soaking of Ligands

Comparison of available space in the ribose-33 pocket for the ligand in a) the soaked crystal structure (**6a**, PDB code: 4gi4) and b) the cocrystallized structure (**6b**, PDB code: 4gkt). Color code: C_{ligand} green, C_{enzyme} gray, O red, N blue. The pocket is indicated as gray surface. Selected water molecules (W1–W4) are shown as space-filling, red spheres.

Supplementary Figure S10. Comparison of the Binding Mode of 4c and 6a

Comparison of the X-ray crystal structures of *Z. mobilis* TGT with **4c** (C cyan; PDB code: $3gc4^{[1]}$) and **6a** (C green; PDB code: 4gi4), both obtained by soaking. The phenyl substituent of **6a** is shifted by about 1 Å deeper into the ribose-34 pocket. Color code: O red, N blue. The active site is indicated as gray surface. Hydrogen bonds are shown as black dashed lines.

11 Synthetic Details and Experimental Data

11.1 Synthesis of the *lin*-Benzopurines

The 5-aminobenzimidazoles **8a–c** were prepared according to previously described procedures (Scheme S1).^[3,4] Iodination at C(4) furnished **9a–c**, which were used for Suzuki cross-coupling reaction with borolane **10**. The obtained 4-vinylbenzimidazoles **11a–c** were transformed to the corresponding alcohols **12a–c** by hydroboration with 9-BBN, followed by oxidative workup. Subsequent Mitsunobu reaction furnished phthalimides **13a–c**, which were cleaved with hydrazine to give the amines **14a–c**.

Supplementary Scheme S1.

Synthesis of *lin*-benzohypoxanthines **7a–c**. a) I₂, NaHCO₃, CH₂Cl₂/H₂O, 25 °C, 1–3 d; **9a**: 70%, **9b**: 37%, **9c**: 84%. b) **10**, Et₃N, [PdCl₂(PPh₃)₂], DME/H₂O, 85 °C, 3 h; **11a**: 69%, **11b**: 71%, **11c**: 77%. c) i) 9-BBN, THF, 25 °C, 3 h; ii) H₂O₂, NaOH, H₂O, 0 to 25 °C, 4 h; **12a**: 55%, **12b**: 46%, **12c**: 53%. d) PPh₃, DIAD, phthalimide, THF, 0 to 25 °C, 40 min; **13a**: 69%, **13b**: 71%, **13c**: 77%. e) H₂NNH₂·H₂O, MeOH/THF, 50 °C, 2 h; **14a**: 99%, **14b**: 93%, **14c**: 82%. f) Cyclohexanecarbaldehyde, NaBH(OAc)₃, 0 to 25 °C, 13–19 h; **15a**: 52%, **15b**: 46%, **15c**: 72%. g) i) Formamide, 140 °C, 18–22 h; ii) aq. HCl, MeOH, 65 °C, 18–24 h; **7a**: 28%, **7b**: 20%, **7c**: 19%. 9-BBN = 9-borabicyclo[3.3.1]nonane, DIAD = *N*,*N*-diisopropyl azodicarboxylate, DME =1,2-dimethoxyethane, THF = tetrahydrofuran. Reductive amination of the amines using either cylcohexyl-, cyclopentyl-, or benzaldehyde furnished the benzimidazoles **15a–c** and **16a,b** (Schemes S1 and S2).

The *lin*-benzohypoxanthines $7\mathbf{a}-\mathbf{c}$ were accessible by cyclization using formamide followed by acidic deprotection. The *lin*-benzoguanines $6\mathbf{a}-\mathbf{c}$ were directly obtained as trihydrochloride salts by cyclization with chloroformamidinium chloride.

Supplementary Scheme S2.

Synthesis of *lin*-benzoguanines **6a–c**. a) Benzaldehyde, cyclopentanecarbaldehyde, or cyclohexanecarbaldehyde, NaBH(OAc)₃, 0 to 25 °C, 13–19 h; **15c**: 72%, **16a**: 45%, **16b**: 40%. b) Chloroformamidinium chloride, Me₂SO₂, 130 °C, 1–2 h; **6a**·3 HCl: 59%, **6b**·3 HCl: 53%, **6c**·3 HCl: 48%.

11.2 Materials and Methods

Commercial reagents (ABCR, Aldrich, AlfaAesar, Acros, Fluka, and TCI Deutschland) were purchased as reagent-grade and used without further purification.

Solvents for extraction or column chromatography were of technical quality and were distilled before use.

Anhydrous solvents (CH₂Cl₂, DMF, and THF) for reactions were purified by a solvent drying system from LC Technology Solutions Inc. SP-105 under nitrogen atmosphere (H₂O content < 10 ppm as determined by Karl-Fischer titration). Formamide was dried by storing over 4 Å molecular sieves.

Evaporation was performed at ≤ 40 °C and ~ 10 mbar. Further drying of the compounds was carried out at $\sim 10^{-2}$ mbar.

All reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise stated. Reactions mixtures were stirred with a magnetic stirring bar and monitored by liquid chromatography/mass spectrometry (LC/MS) or by thin-layer chromatography (TLC).

TLC was carried out on SiO_2 -layered glass plates (60 F_{254} , Merck). Visualization was achieved using UV light with a wavelength of 254 nm.

LC/MS was performed on an Ultimate 3000 series LC instrument combined with an MSQ Plus mass spectrometer from Dionex, using a Zorbax Eclipse Plus C18 column (30 x 3 mm; 3.5 µm pore size) from Agilent.

Flash column chromatography (FC) was performed using SiO₂-60 (230–400 mesh ASTM, 0.040–0.063 mm from Fluka) or MCI gel (CHP20P, styrene-divinylbenzene, 75–150 μ m, from Supelco) at 25 °C with a head pressure of 0.0–0.4 bar. The solvent compositions are reported individually.

Medium pressure liquid chromatography (MPLC) was conducted on a Büchi MPLC System with pump module C-601 & C-605 and fraction collector C-660 with a gradient using the solvent mixtures indicated individually.

High performance liquid chromatography (HPLC) was carried out using a Merck Hitachi L-7100 pump (for analytic HPLC) or a Merck Hitachi L-7150 pump (for preparative HPLC), equipped with a Merck Hitachi D-7000 interface and a Merck Hitachi L-7614 degasser. For detection, a Merck Hitachi L-7400 UV detector (254 nm) was used. The analytical samples were injected using a Merck Hitachi L-7200 auto sampler. The column used was Phenomenex, 50 x 21.1 mm, Gemini 5 µm, C18, 110 A, AXIA, with a flow rate of 12 mL/min.

Melting points (m.p.) were determined on a B-540 apparatus from Büchi in open capillaries and are not corrected.

Proton nuclear magnetic resonance (¹H NMR) and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Varian Gemini 300, a Varian Mercury 300, a Bruker AV 400, a Bruker DRX 400, a Bruker DRX 500, or a Bruker DRX 600 spectrometer. All spectra were measured at 25 °C. The residual solvent peak was used as the internal reference (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} =$ 77.16 ppm; (CD₃)₂SO: $\delta_{\rm H} = 2.50$ ppm, $\delta_{\rm C} = 39.52$ ppm; CD₃OD: $\delta_{\rm H} = 3.31$ ppm). The ¹H NMR spectra are reported as follows: chemical shift δ in ppm relative to TMS ($\delta = 0$ ppm) (multiplicity, coupling constant *J* in Hz, number of protons; suggested assignment). The resonance multiplicity is described as s (singlet), d (doublet), t (triplet), q (quartet), sept. (septet) combinations thereof, or m (multiplet). Broad signals are described with br. (broad). The ¹³C NMR spectra are reported as follows: chemical shift δ in ppm relative to TMS ($\delta = 0$ ppm) (number of nuclei if greater than 1; suggested assignment if possible).

Infrared (IR) spectra were recorded on an ATR-unit-upgraded (Golden Gate) Perkin-Elmer FT-IR Spectrum 1600 spectrometer. The spectra were measured between 4000–600 cm⁻¹. Selected absorption bands are reported in wave numbers (cm⁻¹) with relative intensities described as s (strong), m (medium), or w (weak).

High resolution mass spectrometry (HR-MS) was performed by the MS service of the Laboratorium für Organische Chemie der ETH Zürich. High resolution electrospray ionization (ESI) spectra were measured on a Bruker maXis spectrometer. High-resolution matrix-assisted laser desorption/ionization (MALDI) spectra were measured on an Ionspec (Varian) Ultima FT-ICR or a Solarix (Bruker) FT-ICR mass spectrometer using 3-hydroxypicolinic acid (3-HPA) as a matrix.

Elemental analyses were measured by the Mikroanalytisches Laboratorium für Organische Chemie der ETH Zürich.

Nomenclature follows the suggestions proposed by the computer program ACD Name from ACD/Labs. Numbering of the atoms in the figures was defined arbitrarily to allow an unambiguous assignment of the NMR peaks.

11.3 General Procedures (GPs)

GP 1 for the Cyclization to the *lin*-Benzoguanines:

A suspension of the benzimidazole (1 eq), chloroformamidinium chloride (2 eq), and Me₂SO₂ was stirred at 130 °C for 1–2 h. The mixture was diluted with sat. aq. NaHCO₃ solution and the precipitate collected by centrifugation. FC (MCI gel; $H_2O + 0.1$ vol-% conc. HCl/MeOH) and evaporation gave the *lin*-benzoguanines.

GP 2 for the Cyclization to the *lin*-Benzohypoxanthines:

A solution of the benzimidazole (1 eq) in anhydrous formamide was heated at 140 °C for 18–22 h under Ar and evaporated by bulb-to-bulb distillation (0.5 mbar, 140 °C). A solution of the residue in aq. conc. HCl/MeOH 1:2 (6.0 mL) was stirred at 65 °C for 18–24 h, neutralized (pH 6–7) with aq. sat. NaHCO₃ solution, and evaporated. HPLC ([Phenomenex, 50x21.1 mm, Gemini 5 μ m, C18, 110 A, AXIA]; flow rate 12 mL/min, H₂O + 0.1 vol-% HCOOH/MeCN 100:0 for 10 min, 100:0 to 80:20 within 40 min), evaporation, and lyophilization gave the *lin*-benzohypoxanthines.

GP 3 for the Iodination of 5-Aminobenzimidazoles:

A solution of the aminobenzimidazole (1 eq) and iodine (1.2 eq) in $CH_2Cl_2/sat.$ aq. NaHCO₃ solution 2:1 was vigorously stirred at 25 °C for 1–3 d, diluted with sat. aq. Na₂S₂O₃ solution, and extracted with CH_2Cl_2 (2x). The combined org. layers were dried over Na₂SO₄, filtered, and evaporated. The residue was purified chromatographically.

GP 4 for the Suzuki Cross-Coupling Reaction:

A suspension of the aryl iodide (1 eq), vinylboronic acid pinacol ester (10; 1.6 eq), and Et₃N (3 eq) in DME/H₂O 5:1 was degassed in an ultra sonicator with Ar and treated with $[PdCl_2(PPh_3)_2]$ (0.05 eq). The mixture was stirred at 85 °C for 3 h, diluted with aq. sat. NaHCO₃ solution, and extracted with EtOAc (3x). The combined org. layers were dried over Na₂SO₄, filtered, and evaporated. The residue was purified chromatographically.

GP 5 for the Hydroboration:

The neat olefin (1 eq) was treated with a 0.5 M solution of 9-BBN in THF (3 eq) under Ar. After stirring at 25 °C for 3 h, 30% H_2O_2 in H_2O (10 eq) and 1 M aq. NaOH solution (10 eq) were added dropwise at 0 °C. The mixture was stirred vigorously at 25 °C for 4 h, diluted with sat. aq. NH₄Cl solution, and extracted with EtOAc (3x 50 mL). The combined org. layers were dried over Na₂SO₄, filtered, and evaporated. The residue was purified chromatographically.

GP 6 for the Mitsunobu Reaction with Phthalimide:

A solution of PPh₃ (2 eq) in anhydrous THF was treated with DIAD (1 eq) at 0 $^{\circ}$ C and stirred for 10 min until a pale yellow precipitate was formed. A solution of the alcohol (1 eq) and phthalimide (2 eq) in anhydrous THF was added. The mixture was stirred at 25 $^{\circ}$ C for 30 min and evaporated. The residue was purified chromatographically.

GP 7 for the Cleavage of Phthalimide:

A solution of the phthalimide (1 eq) and hydrazine monohydrate (10 eq) in MeOH/THF 95:5 was stirred at 50 °C for 2 h. After evaporation, the mixture was taken up in 1 M aq. NaOH solution and extracted with CH_2Cl_2 (3x 50 mL). The combined org. layers were dried over Na_2SO_4 , filtered, and evaporated to yield the amine.

GP 8 for the Reductive Amination:

A solution of the amine (1 eq) and the aldehyde (1 eq) in anhydrous CH_2Cl_2 over 4 Å molecular sieves was stirred at 25 °C for 1 h under Ar, cooled to 0 °C, and treated with NaBH(OAc)₃ (4 eq). The mixture was stirred at 25 °C for 13–19 h, diluted with 2 M aq. NH₃ solution, and extracted with EtOAc (3x). The combined org. layers were dried over Na₂SO₄, filtered, and evaporated. After purification by MPLC, the residue was dissolved in *t*BuOH and lyophilized to give the amine.

11.4 Compilation of ¹H and ¹³C NMR Data

Table S1.Selected ¹H NMR data (400 MHz) of 6a–c. The atom numbering for some compounds differs from the numbering in the experimental part.

$H_{R} = H_{R} = H_{R} = H_{R} = H_{R}$					
R =	7a	7b	7c		
H _{ax} -C(2",6")	0.97 (qd, J = 12.6, 2.9 Hz)	0.95 (qd, J = 11.9, 3.0 Hz)	0.91 (qd, J = 11.9, 2.1 Hz)		
$H_{ax}-C(4'')$	1.13 (tt, J = 12.3, 2.8 Hz)	1.13 (tt, J = 12.3, 3.1 Hz)	1.10 (tt, J = 12.0, 3.0 Hz)		
$H_{ax} - C(3'', 5'')$	1.20 (qt, J = 12.6, 3.3 Hz)	1.19 (tt, J = 12.3, 3.1 Hz)	1.16 (br. tt, $J \approx 12.0, 3.0 \text{ Hz}$)		
H–C(1")	1.65–1.73 (m)	1.59–1.83 (m)	1.18–1.23 (m)		
_ H _{eq} -C(2",3",4",	1.57–1.86 (m)	1.59–1.82 (m)	1.16 (br. d, $J \approx 12.6$ Hz)		
<u>E</u> 5",6")			1.58–1.66 (m)		
E 5",6") ⊂ CH ₂ −C(1")	2.87 (t, $J = 6.2$ Hz)	2.87 (d, J = 7.0 Hz)	2.79 (d, J = 7.2 Hz)		
ば CH ₂ -C(4)	3.21 (br. t, $J \approx 6.6$ Hz)	2.73–2.78 (m)	2.93 (t, $J = 7.2$ Hz)		
$CH_2CH_2NH-C(2)$		3.23 (t, J = 7.3 Hz)	3.16 (t, J = 7.5 Hz)		
$CH_2CH_2-C(4)$	3.73 (br. t, $J \approx 6.6$ Hz)	3.58 (t, J = 7.5 Hz)	3.52 (t, J = 7.2 Hz)		
$CH_2NH-C(2)$	5.08–5.19 (m)	3.58 (t, J = 7.5 Hz)	3.61 (t, J = 7.2 Hz)		
H–C(9)	7.95 (s)	7.76 (s)	7.71 (s)		
H-C(6)	8.13 (s)	8.15 (s)	7.95 (s)		
CH ₂ -C(4)	22.71	22.13	22.75		
C(3",5")	25.00	24.92	24.96		
C(4")	25.57	25.49	25.56		
C(2",6")	30.02	29.92	29.99		
C(1")	34.43	34.27	34.72		
$CH_2NH-C(2)$	41.46	46.95	43.63		
$CH_2CH_2-C(4)$	46.94	52.78	52.71		
Е <u>CH</u> 2-C(1")	52.71	52.24	47.27		
$E_{\rm CH_2CH_2NH-C(2)}$		56.96	35.27		
$ \begin{array}{c} \text{E} & \text{CH}_2-\text{C}(1) \\ \text{E} & \text{CH}_2\text{CH}_2\text{NH}-\text{C}(2) \\ \hline & \text{C}(8a) \\ \end{array} $	105.77	103.67	103.86		
- C(9)	116.91	115.30	115.26		
C(4)	118.65	116.53	116.07		
C(3a)	129.53	141.29	136.71		
C(9a)	134.60	141.39	141.07		
C(4a)	143.21	146.19	145.65		
C(6) C(2)	143.70 151.85	158.04 161.21	158.49 161.30		
	160.74	162.90	165.18		
C(8)	100.74	102.70	105.10		

Table S2.Selected ¹H (600 MHz) and ¹³C (150 MHz) NMR data of **7a–c** in (CD₃)₂SO. The atom
numbering for some compounds differs from the numbering in the experimental part.

$ \begin{array}{c} $					
R =	9a	9b	9c		
CH ₂ CH ₂ NH		2.67 (t, J = 5.9 Hz)	3.04 (t, J = 6.8 Hz)		
NMe ₂	2.89 (s)	2.93 (s)	2.73 (s)		
$ \begin{array}{c} \text{In OMe} \\ \hline \\ CH_2\text{NH} \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	3.90 (s)	3.89 (s)	3.86 (s)		
$\stackrel{\overline{\mathbf{CL}}}{\sim} CH_2 NH$	4.99 (d, J = 5.1 Hz)	3.70-3.75 (m)	3.89 (td, J = 6.8, 5.4 Hz)		
$\sim H_2$ NH ₂	6.46 (br. s)	6.44 (br. s)	6.42 (br. s)		
NH	6.69 (t, J = 5.6 Hz)	7.07 (t, J = 4.4 Hz)	6.37 (t, J = 5.4 Hz)		
H–C(7)	8.08 (s)	8.06 (s)	8.01 (s)		
NMe ₂	38.79	38.80	38.76		
CH ₂ NH	42.01	34.41	44.52		
OMe	51.85	51.80	51.92		
CH_2CH_2NH		56.51	35.29		
E C(4)	73.44	73.03	73.37		
$\operatorname{mdd}_{2} C(4)$ $\operatorname{C}(6)$ $\operatorname{C}(7)$ $\operatorname{C}(7)$	104.35	104.01	104.21		
$\sum_{i} C(7)$	114.35	114.12	114.27		
° C(7a)	121.77	121.82	121.82		
C(3a)	148.65	148.58	148.76		
C(5)	149.75	150.04	150.17		
C(2)	154.19	154.86	154.78		
C=O	168.05	168.10	168.22		

Table S3. Selected ¹H (400 MHz) and ¹³C (100 MHz) NMR data of 9a-c in CDCl₃.

Table S4. Selected ¹H (400 MHz) and ¹³C NMR (100 MHz) data of 11a-c in CDCl₃

$HN = \frac{2}{R} + \frac{1}{N} + \frac{6}{5} + \frac{6}{NH_2}$					
D	11a	11b	11c		
R =	Ľ _s ∕∕		$\bigvee \!$		
NMe ₂	2.89 (s)	2.93 (s)	2.74 (s)		
OMe	3.89 (s)	3.88 (s)	3.85 (s)		
CH_2NH	4.95 (d, J = 5.4 Hz)	3.68 (q, J = 5.5 Hz)	3.84 (td, J = 7.0, 5.4 Hz)		
$CH=CH_E$	5.72 (dd, $J = 11.8$,	5.68 (dd, $J = 11.8$,	5.69 (dd, $J = 11.8$,		
E	2.0 Hz)	2.1 Hz)	2.1 Hz)		
Mad NH ₂	6.16 (br. s)	6.16 (br. s)	6.13 (br. s)		
\gtrsim CH=CH _Z	6.30 (dd, J = 17.8,	6.20 (dd, $J = 17.9$,	6.25 (dd, $J = 17.8$,		
0	2.0 Hz)	2.1 Hz)	2.1 Hz)		
NH	6.67 (t, J = 5.8 Hz)	6.99 (t, J = 4.8 Hz)	6.34 (t, J = 5.4 Hz)		
CH=CH ₂	6.93 (dd, $J = 17.8$,	6.92 (dd, $J = 17.9$,	6.92 (dd, $J = 17.8$,		
	11.8 Hz)	11.8 Hz)	11.8 Hz)		
H-C(7)	8.05 (s)	8.04 (s)	7.99 (s)		
NMe ₂	38.79	38.81	38.78		
CH ₂ NH	41.93	39.41	44.49		
OMe	51.61	51.58	51.68		
C(6)	104.70	104.31	104.55		
_ C(4)	111.37	110.99	111.24		
C(7) CH=CH ₂	113.46	113.27	113.43		
$CH = CH_2$	119.72	119.41	119.57		
_କ ି C(7a)	123.40	123.42	123.45		
CH=CH ₂	128.42	128.68	126.82		
C(3a)	145.77	146.18	146.31		
C(5)	146.79	146.76	146.94		
C(2)	154.39	155.01	154.98		
C=O	168.96	169.03	169.14		

$ \begin{array}{c} $					
		бн			
	12a	12b	12c		
R =			\bigcirc		
OH	1.60-1.86 (br. s)	1.48–1.78 (br. s)	1.52–1.73 (br. s)		
CH_2CH_2NH		2.67 (t, J = 5.9 Hz)	2.97-3.03 (m)		
NMe ₂	2.89 (s)	2.96 (s)	2.75 (s)		
$_{\Xi}$ CH ₂ CH ₂ OH	3.04 (t, J = 5.6 Hz)	2.99 (t, J = 5.6 Hz)	2.97-3.03 (m)		
$ \begin{array}{c} CH_2 CH_2 OH \\ \hline CH_2 OH \\ \hline CH_2 OH \\ \hline CH_2 NH \\ \hline CH_2 $	3.88 (s)	3.89 (s)	3.85 (s)		
$\subseteq CH_2OH$	4.04 (t, J = 5.6 Hz)	4.02 (t, J = 5.6 Hz)	4.03 (t, J = 5.5 Hz)		
$^{\circ}CH_{2}NH$	4.89 (d, J = 5.5 Hz)	3.61 (q, J = 5.5 Hz)	3.78 (td, J = 6.9, 5.5 Hz)		
NH ₂	5.97 (br. s)	[a]	5.94 (br. s)		
NH	6.73 (t, J = 5.7 Hz)	7.03 (t, $J = 4.8$ Hz)	6.37 (t, J = 5.5 Hz)		
H–C(7)	8.03 (s)	8.03 (s)	7.97 (s)		
CH ₂ CH ₂ OH	29.47	29.53	29.82		
NMe ₂	38.77	38.79	35.32		
CH ₂ NH	41.98	39.44	44.56		
OMe	51.62	51.61	51.79		
CH_2CH_2NH		56.26	38.84		
F CH ₂ OH	61.80	61.71	61.84		
ECH2OH C(6) C(4)	105.16	104.90	104.94		
$\sum_{c} C(4)$	112.22	111.95	112.09		
^с С(7)	112.55	112.39	112.41		
C(7a)	123.04	123.09	122.93		
C(3a)	145.84	145.90	145.83		
C(5)	147.55	147.36	147.39		
C(2)	153.93	154.40	154.21		
C=O	169.00	169.05	168.97		

Table S5. Selected ¹H (400 MHz) and ¹³C (100 MHz) NMR data of 12a-c in CDCl₃.

[a] Signal not observed.

Table S6.Selected ¹H (400 MHz) and ¹³C (100 MHz) NMR data of **13a–c** in CDCl₃. The atom
numbering for some compounds differs from the numbering in the experimental part.

	$ \begin{array}{c} $					
R =	13a		13c			
CH ₂ CH ₂ NH		2.60 (t, J = 5.7 Hz)	3.22 (t, J = 6.8 Hz)			
NMe ₂	2.84 (s)	2.87 (s)	2.71 (s)			
$CH_2-C(4)$	$3.26 (t, J \approx 7.6 \text{ Hz})$	3.17 (t, J = 7.7 Hz)	2.97 (t, J = 6.9 Hz)			
$ \overset{\text{fig. OMe}}{\sim} CH_2CH_2-C(4) $	3.88 (s)	3.85 (s)	3.85 (s)			
\subseteq CH ₂ CH ₂ -C(4)	3.98 (t, $J \approx 7.6$ Hz)	3.92 (t, J = 7.7 Hz)	3.96 (t, J = 6.8 Hz)			
$\sim CH_2NH$	4.81 (d, J = 5.6 Hz)	3.54 (q, J = 5.4 Hz)	3.70 (td, J = 6.9, 5.6 Hz)			
NH ₂	6.29 (br. s)	6.25 (br. s)	6.24 (br. s)			
NH			6.21 (br. t, $J \approx 5.6$ Hz)			
H-C(7)	8.02 (s)	7.98 (s)	7.80 (s)			
$CH_2-C(4)$	24.27	24.38	24.40			
$CH_2CH_2-C(4)$	35.84	35.91	35.95			
NMe ₂	38.79	38.95	38.77			
CH ₂ NH	41.79	39.41	44.33			
OMe	51.51	51.62	51.57			
CH_2CH_2NH		56.79	35.43			
C(6)	104.50	104.29	104.35			
Е ^{C(4)}	109.76	109.47	109.68			
$ \begin{array}{c} \text{und} C(7) \\ \text{C}(7a) \\ \text{C}(7a) \end{array} $	112.98	112.94	112.92			
$\sim C(7a)$	122.82	123.01	122.86			
• C(3",6")	123.16	123.29	123.25			
C(1",2")	132.30	132.46	132.45			
C(4",5")	133.87	133.97	133.91			
C(3a)	147.02	147.55	147.53			
C(5)	147.42	147.55	147.55			
C(2)	154.16	154.95	154.76			
2 C=O	168.43	168.56	168.50			
C=O	169.04	169.24	169.19			

 $\dot{N}H_2$ 14b 14c 14a R =CH₂CH₂NH 2.63 (t, J = 6.0 Hz) 2.96–3.01 (m) ---NMe₂ 2.88 (s) 2.92 (s) 2.72 (s) 2.97-3.07 (m) 2.96-3.01 (m) 3.85 (s) 3.82 (s) 4.92 (d, J = 5.5 Hz) 3.62 (q, J = 5.6 Hz) 3.80 (td, J = 6.8, 5.5 Hz) G CH₂NH NH 6.64 (t, J = 5.8 Hz) 6.88 (t, J = 4.6 Hz) 6.28 (t, J = 5.5 Hz) <u>H</u>-C(7) 8.01 (s) 7.97 (s) 7.93 (s) $CH_2 - C(4)$ 29.51 29.39 29.45 38.76 38.79 38.62 NMe₂ $CH_2CH_2-C(4)$ 41.06 40.98 41.05 CH₂NH 41.88 39.43 44.24 OMe 51.54 51.51 51.50 CH₂CH₂NH 56.60 35.23 ---104.85 104.49 104.42 C(4) 112.08 112.33 112.14 ŝ C(7) 112.59 112.14 112.08 C(7a) 123.11 123.16 122.97 C(3a) 146.97 147.32 147.27 147.57 147.55 147.58 C(5) 154.06 154.64 154.40 C(2) 169.11 167.17 169.12 C=O

Table S8.	Selected ¹ H NMR data of 15a , c and 16a , b in CDCl ₃ .

		O ^S N7		
			0	
		$R_1 \rightarrow N \rightarrow 15$	NH ₂	
		_NH		
		R ₂		
	15a	15c	16a	16b
$\mathbf{R}^1 =$				
	[∟] s			
- 2				
$R^2 =$	Ţ	Ţ	Ţ	Ţ
				\Box
Frequency	400 MHz	400 MHz	300 MHz	300 MHz
CH_2-R^2	2.57 (d, J =	2.49 (d, $J =$	3.76–3.82 (m)	2.59 (d, J =
_	6.7 Hz)	6.7 Hz)		7.3 Hz)
CH_2-R^1		2.98-3.07 (m)	2.97-3.02 (m)	2.98-3.07 (m)
NMe ₂	2.88 (s)	2.74 (s)	2.75 (s)	2.74 (s)
$CH_2-C(4)$	3.00 (t, J =	2.90 (t, $J =$	2.97-3.02 (m)	2.92 (t, J = 6.2 Hz)
E CHON O(4)	6.6 Hz)	6.4 Hz)	210.4 $t_{\rm ex}$	2.00.2.07()
Б. CH2CH2-C(4)		2.98–3.07 (m)	3.10 (br. t, $J \approx$	2.98–3.07 (m)
$\overset{\text{IIII}}{\sim} CH_2CH_2-C(4)$	6.7 Hz) 3.87 (s)	3.84 (s)	6.0 Hz) 3.85 (s)	3.84 (s)
CH_2 NH–C(2)		3.82 (td, J = 6.8,	· · ·	3.81 (td, J = 6.9,
$CH_2(G) C(2)$	5.5 Hz)	5.5 Hz)	5.6 Hz)	5.5 Hz)
NH-C(2)	6.63 (t, J =	6.27 (t, J =	[a]	6.27 (t, J =
	5.8 Hz)	5.5 Hz)		5.5 Hz)
H–C(7)	7.99 (s)	7.93 (s)	7.95 (s)	7.93 (s)
Frequency	100 MHz	75 MHz	75 MHz	75 MHz
$CH_2-C(4)$	25.59	26.23	26.09	26.38
CH_2-R^1		38.33	35.18	40.23
NMe ₂	38.77	38.83	38.57	38.66
$CH_2NH-C(2)$		44.46	44.19	44.29
$CH_2CH_2-C(4)$	·	49.33	48.21	49.14
OMe	51.50	51.63	51.42	54.45
$\operatorname{E}_{C(6)}^{\operatorname{CH}_2-\operatorname{R}^2}$	56.22	57.04	53.90	55.80
⊂ C(6)	104.75	104.42	104.37	104.25
	112.42	112.03	112.90	113.27
C(7) C(7a)	112.42 122.91	113.42 122.86	112.02 122.85	111.86 122.69
C(7a) C(3a)	122.91	146.92	122.85	146.76
C(5a) C(5)	140.00	148.06	140.97	140.70
C(3) C(2)	154.02	154.30	154.29	154.12
C=O	169.06	169.11	169.09	168.94
[a] Signal not obs			- 0 / . 0 /	

[a] Signal not observed.

11.5 Experimental Data

Compounds **8a–c** were prepared as described in literature.^[3]

6-Amino-4-{2-[(benzylamino)amino]ethyl}-2-[(2-phenylethyl)amino]-1,7dihydro-8*H*-imidazo[4,5-*g*]quinazolin-8-one Trihydrochloride (6a·3 HCl):

According to **GP 1**, starting from **15c** (43 mg, 0.08 mmol), chloroformamidinium chloride (15 mg, 0.16 mmol), and Me₂SO₂ (400 mg). The mixture was diluted with sat. aq. NaHCO₃ solution (5 mL) and the precipitate collected by centrifugation. FC (MCI gel; H₂O + 0.1 vol-% conc. HCl/MeOH 70:30 to 60:40) and evaporation yielded **6a**·3 HCl (21 mg, 48%) as a white solid.

M.p. > 225 °C (decomp.); ¹H NMR (400 MHz, CD₃OD): δ = 3.04 (t, *J* = 6.6 Hz, 2 H; CH₂-C(1')), 3.38–3.43 (m, 2 H; CH₂-C(4)), 3.58–3.65 (m, 2 H; CH₂CH₂-C(4)), 3.83–3.88 (m, 2 H; CH₂NH–C(2)), 4.55 (br. s, 2 H; CH₂-C(1")), 7.17 (t, *J* = 7.3 Hz, 1 H; H–C(4) of C₆H₅), 7.25–7.36 (m, 4 H of C₆H₅), 7.43–7.46 (m, 3 H of C₆H₅), 7.59–7.62 (m, 2 H of C₆H₅), 7.90 ppm (s, 1 H; H–C(9)); ¹³C NMR (100 MHz, (CD₃)₂SO + 1 drop TFA): δ = 22.38 (CH₂-C(4)), 34.80 (CH₂-C(1')), 44.29 (CH₂NH–C(2)), 45.51(CH₂CH₂-C(4)), 49.97 (CH₂-C(1")), 106.64 (C(9)), 128.64128.28, and 128.98 (8 C; C(2',3',5',6',2",3",5",6")), 128.91 (2 C; C(4',4")), 138.28 (2 C; C(1',1")), 151.39 ppm (C(2)), 7 signals hidden by noise; IR (ATR): $\tilde{\nu}$ = 3408 (w), 3338 (w), 2953 (br. w), 1678 (s), 1579 (m), 1453 (m), 1267 (w), 1209 (w), 1154 (w), 1073 (w), 739 (m), 696 cm⁻¹ (s); HR-MALDI-MS: *m/z* (%): 455.2379 (31), 454.2344 (100, [*M*+H]⁺, calcd for C₂₆H₂₈N₇O⁺: 454.2350). 6-Amino-4-{2-[(cyclopentylmethyl)amino]ethyl}-2-[(2-phenylethyl)amino]-1,7dihydro-8*H*-imidazo[4,5-g]quinazolin-8-one Trihydrochloride (6b·3 HCl):

According to **GP 1**, starting from **16a** (29 mg, 0.05 mmol), chloroformamidinium chloride (11 mg, 0.10 mmol), and Me₂SO₂ (400 mg). The mixture was diluted with sat. aq. NaHCO₃ solution (5 mL) and the precipitate collected by centrifugation. FC (MCI gel; H₂O + 0.1 vol-% conc. HCl/MeOH 60:40 to 50:50) and evaporation yielded **6b** · 3 HCl (16 mg, 53%) as a white solid.

¹H NMR (400 MHz, $(CD_3)_2SO + 1$ drop TFA; M.p. $> 250 \,^{\circ}\text{C}$ (decomp.); assignments based on a DQF-COSY spectrum): $\delta = 1.19 - 1.29$ (m, 2 H; $H_a-C(2",5")$, 1.46–1.63 (m, 4 H; $H_2C(3",4")$), 1.75–1.83 (m, 2 H; $H_b-C(2",5")$), 2.16 (sept., J = 7.5 Hz, 1 H; H–C(1")), 2.96 (t, J = 7.3 Hz, 2 H; CH₂–C(1')), 3.01 (d, J = 7.5 Hz, $CH_2-C(1'')$), 3.23 (t, J = 6.9 Hz, 2 H; $CH_2-C(4)$), 3.53 (t, J =6.9 Hz, 2 H; CH₂CH₂-C(4)), 3.77-3.84 (m, 2 H; CH₂NH-C(2)), 7.16-7.22 (m, 1 H; H–C(4')), 7.27–7.36 (m, 4 H; H–C(2',3',5',6')), 7.77 (s, 1 H; H–C(9)), 8.04 (br. s, 1 H; NH), 8.83 (br. s, 2 H; NH₂), 9.21 ppm (br. s, 1 H; NH); ¹³C NMR $(125 \text{ MHz}, (CD_3)_2\text{SO} + 1 \text{ drop TFA}): \delta = 22.22 (CH_2 - C(4)), 24.58 (2 \text{ C}; C(3'', 4'')),$ 30.09 (2 C; C(2",5")), 34.72 (CH₂-C(1')), 36.45 (C(1")), 44.25 (CH₂NH-C(2)), 45.87 (CH₂CH₂-C(4)), 51.46 (CH₂-C(1")), 106.80 (C(9)), 109.51 (C(4)), 126.42 (C(4')), 128.32 and 128.94 (4 C; C(2',3',5',6')), 138.21 (C(1")), 151.40 ppm (C(2)), 6 signals hidden by noise; IR (ATR): $\tilde{\nu} = 3424$ (w), 2948 (w), 1678 (s), 1575 (w), 1447 (m), 1386 (w), 1200 (w), 1140 (w), 1014 (w), 984 (w), 745 (m), 696 cm⁻¹ (s); HR-MALDI-MS: m/z (%): 446.2664 (100, $[M + H]^+$, calcd for C₂₅H₃₂N₇O⁺: 446.2663).

6-Amino-4-{2-[(cyclohexylmethyl)amino]ethyl}-2-[(2-phenylethyl)amino]-1,7dihydro-8*H*-imidazo[4,5-*g*]quinazolin-8-one Trihydrochloride (6c·3 HCl):

According to **GP 1**, starting from **15c** (35 mg, 0.06 mmol), chloroformamidinium chloride (13 mg, 0.12 mmol), and Me₂SO₂ (400 mg). The mixture was diluted with sat. aq. NaHCO₃ solution (5 mL) and the precipitate collected by centrifugation. FC (MCI gel; H₂O + 0.1 vol-% conc. HCl/MeOH 60:40 to 50:50) and evaporation yielded **6c**·3 HCl (21 mg, 59%) as a white solid.

M.p. $> 225 \,^{\circ}\text{C}$ (decomp.); ¹H NMR (400 MHz, $(CD_3)_2SO + 1$ drop TFA; assignments based on a DQF-COSY spectrum): $\delta = 0.94$ (qd, J = 11.7, 2.4 Hz, 2 H; H_{ax}-C(2",6")), 0.89-0.99 (m, 4 H; H_{ax}-C(3",5"), H₂C(4")), 1.56-1.78 (m, 5 H; H_{eq} -C(2",3",5",6"), H-C(1")), 2.86 (br. d, $J \approx 6.2$ Hz, 2 H; CH₂-C(1")), 2.95 (t, J =7.3 Hz, 2 H; CH₂–C(1')), 3.16–3.22 (m, 2 H; CH₂–C(4)), 3.44–3.50 (m, 2 H; CH₂CH₂-C(4)), 3.70-3.79 (m, 2 H; CH₂NH-C(2)), 6.35 (br. s, 1 H; NH), 7.21-7.23 (m, 1 H; H-C(4')), 7.26-7.35 (m, 4 H; H-C(2',3',5',6')), 7.67 (s, 1 H; H–C(9)), 8.79 ppm (br. s, 2 H; NH₂); ¹³C NMR (125 MHz, (CD₃)₂SO + 1 drop TFA): $\delta = 22.31$ (CH₂-C(4)), 24.93 (2 C; C(3",5")), 25.50 (C(4")), 29.94 (2 C; C(2",6")), 34.34 (CH₂-C(1')), 34.88 (C(1")), 44.05 (CH₂NH-C(2)), 52.67 (CH₂-C(1")), 63.18 (CH₂CH₂-C(4)), 126.29 (C(4')), 128.26 and 128.88 (4 C; C(2',3',5',6')), 138.43 (C(1')), 150.91 ppm (C(2)), 8 signals hidden by noise; IR (ATR): $\tilde{\nu} = 3215$ (w), 2924 (w), 2851 (br w), 1674 (s), 1651 (s), 1524 (w), 1445 (s), 1080 (m), 1009 (m), 778 (w), 694 cm⁻¹ (w); HR-MALDI-MS: *m/z* (%): 461.2850 (33), 460.2816 (100, $[M + H]^+$, calcd for C₂₆H₃₄N₇O⁺: 460.2819), 235.0713 (27).

4-{2-[(Cyclohexylmethyl)amino]ethyl}-2-[(thien-2-ylmethyl)amino]-1,7dihydro-8*H*-imidazo[4,5-*g*]quinazolin-8-one (7a):

According to **GP 2**, starting from **15a** (68 mg, 0.12 mmol) in anhydrous formamide (2.0 mL). HPLC, evaporation, and lyophilization yielded **7a** (15 mg, 28%) as a white solid.

M.p. > 188 °C (decomp); ¹H NMR (600 MHz, $(CD_3)_2SO$): $\delta = 0.97$ (qd, J = 12.6, 2.9 Hz, 2 H; H_{ax} -C(2",6")), 1.13 (tt, J = 12.3, 2.8 Hz, 1 H; H_{ax} -C(4")), 1.20 (qt, $J = 12.6, 3.3 \text{ Hz}, 2 \text{ H}; H_{ax} - C(3'', 5'')), 1.57 - 1.86 \text{ (m, 6 H; H-C(1''), H_{eq} - C(2''-6''))},$ 2.87 (t, J = 6.2 Hz, 2 H; CH₂–C(1")), 3.21 (br. t, $J \approx 6.6$ Hz, 2 H; CH₂–C(4)), 3.73 (br. t, $J \approx 6.6$ Hz, 2 H; $CH_2CH_2-C(4)$), 5.08–5.19 (m, 2 H; $CH_2NH-C(2)$), 7.03 (dd, J = 5.1, 3.5 Hz, 1 H; H-C(3')), 7.36 (br. s, 1 H; H-C(2')), 7.51 (dd, J = 5.1, 1.1 Hz, 1 H; H-C(4')), 7.95 (s, 1 H; H-C(9)), 8.13 (s, 1 H; H-C(6)), 8.87 (br. s, 2 H; 2 NH), 9.98 (br. s, 1 H; NH), 12.36 ppm (br. s, 1 H; NH); ¹³C NMR (150 MHz, (CD₃)₂SO): δ = 22.71 (CH₂-C(4)), 25.00 (2 C; C(3",5")), 25.57 (C(4")), 30.02 (2 C; C(2",6")), 34.43 (C(1")), 41.46 (CH₂NH–C(2)), 46.94 (CH₂CH₂–C(4)), 52.71 (CH₂-C(1")), 105.77 (C(8a)), 116.91 (C(9)), 118.65 (C(4)), 126.30 (C(5')), 126.93 and 127.29 (2 C; C(3',4')), 129.53 (C(3a)), 134.60 (C(9a)), 139.27 (C(2')), 143.21 (C(4a)), 143.70 (C(6)), 151.85 (C(2)), 160.74 ppm (C(8)); IR (ATR): $\tilde{v} = 2926$ (m), 2839 (m), 1669 (s), 1631 (m), 1598 (m), 1447 (m), 1370 (w), 1297 (w), 1277 (w), 1209 (m), 1075 (w), 1013 (w), 891 (w), 848 (w), 792 (w), $699 \text{ cm}^{-1} \text{ (m)};$ HR-MALDI-MS: *m*/*z* (%): 438.2164 (24), 437.2124 (100, $[M + H]^+$, calcd for C₂₃H₂₉N₆OS⁺: 437.2118).

4-{2-[(Cyclohexylmethyl)amino]ethyl}-2-{[2-(morpholin-4-yl)ethyl]amino}-1,7-dihydro-8*H*-imidazo[4,5-g]quinazolin-8-one (7b):

According to **GP 2**, starting from **15b** (140 mg, 0.25 mmol) in anhydrous formamide (4.0 mL). HPLC, evaporation, and lyophilization yielded **7b** (22 mg, 20%) as a pale yellow solid.

M.p. > 235 °C (decomp); ¹H NMR (600 MHz, (CD₃)₂SO, assignments based on a DQF-COSY spectrum): $\delta = 0.95$ (qd, J = 11.9, 3.0 Hz, 2 H; H_{ax}-C(2',6')), 1.13 (tt, J = 12.3, 3.1 Hz, 1 H; H_{ax}-C(4')), 1.19 (tt, J = 12.3, 3.1 Hz, 2 H; H_{ax}-C(3',5')), 1.59–1.82 (m, 6 H; H–C(1'), H_{eq}–C(2'–6')), 2.67 (br. s, 4 H; N(CH₂)₂), 2.73–2.78 (br. s, 2 H; CH₂–C(4)), 2.87 (d, J = 7.0 Hz, 2 H; CH₂–C(1')), 3.23 (t, J = 7.3 Hz, 2 H; $CH_2CH_2NH-C(2)$), 3.58 (t, J = 7.5 Hz, 4 H; $CH_2NH-C(2)$, $CH_2CH_2-C(4)$), 3.67 (br. t, $J \approx 4.8$ Hz, 4 H; O(CH₂)₂), 6.98 (br. s, 0.2 H; NH), 7.29 (br. s, 0.8 H; NH), 7.76 (s, 1 H; H–C(9)), 7.97 (br. s, 1 H; NH), 8.15 (s, 1 H; H–C(6)), 8.98 (br. s, 1 H; NH), 11.94 ppm (br. s, 1 H; NH); ¹³C NMR (150 MHz, (CD₃)₂SO): $\delta = 22.13$ (CH₂-C(4)), 24.92 (2 C; C(3',5')), 25.49 (C(4')), 29.92 (2 C; C(2',6')), 34.27 (C(1')), 46.95 (CH₂NH–C(2)), 52.24 (CH₂–C(1')), 52.78 (CH₂CH₂–C(4)), 56.96 (3 C; N(CH₂)₃), 65.41 (2 C; O(CH₂)₂), 103.67 (C(8a)), 115.30 (C(9)), 116.53 (C(4)), 141.29 (C(3a)), 141.39 (C(9a)), 146.19 (C(4a)), 158.04 (C(6)), 161.21 (C(2)), 162.90 ppm (C(8)); IR (ATR): $\tilde{v} = 2923$ (m), 2852 (m), 1639 (s), 1621 (s), 1595 (s), 1572 (s), 1435 (s), 1373 (m), 1342 (m), 1304 (m), 1275 (m), $1220 \text{ (m)}, 1182 \text{ (m)}, 1100 \text{ (m)}, 1018 \text{ (m)}, 873 \text{ (m)}, 796 \text{ (m)}, 760 \text{ cm}^{-1} \text{ (m)};$ HR-MALDI-MS: m/z (%): 455.2964 (25), 454.2931 (100, $[M + H]^+$, calcd for C₂₄H₃₆N₇O₂+: 454.2925).

4-{2-[(Cyclohexylmethyl)amino]ethyl}-2-[(2-phenylethyl)amino]-1,7-dihydro-8*H*-imidazo[4,5-*g*]quinazolin-8-one (7c):

According to **GP 2**, starting from **15c** (140 mg, 0.25 mmol) in anhydrous formamide (4.0 mL). HPLC, evaporation, and lyophilization yielded **7c** (22 mg, purity 95%, yield 19%) as a pale yellow solid.

M.p. > 150 °C (decomp); ¹H NMR (600 MHz, (CD₃)₂SO): $\delta = 0.91$ (qd, J = 11.9, 2.1 Hz, 2 H; H_{ax} -C(2",6")), 1.10 (tt, J = 12.0, 3.0 Hz, 1 H; H_{ax} -C(4")), 1.16 (br. tt, $J \approx 12.0, 3.0 \text{ Hz}, 2 \text{ H}; H_{ax} - C(3", 5")), 1.18 - 1.23 \text{ (m, 1 H; H} - C(1")), 1.26 \text{ (br. d,}$ $J \approx 12.6 \text{ Hz}, 2 \text{ H}; \text{ H}_{ea} - C(3^{"}, 5^{"})), 1.58 - 1.66 \text{ (m, 3 H; H}_{ea} - C(2^{"}, 4^{"}, 6^{"})), 2.79 \text{ (d,}$ $J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2-\text{C}(1")), 2.93 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2-\text{C}(4)), 3.16 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2-\text{C}(4))$ $J = 7.5 \text{ Hz}, 2 \text{ H}; \text{ CH}_2-\text{C}(1')), 3.52 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ H}; \text{ CH}_2\text{CH}_2-\text{C}(4)), 3.61 \text{ (t, } J = 7.2 \text{ Hz}, 2 \text{ Hz},$ $J = 7.2 \text{ Hz}, 2 \text{ H}; CH_2\text{NH-C}(2)), 7.20-7.22 \text{ (m, 1 H; NH)}, 7.30-7.32 \text{ (m, 5 H;}$ C₆H₅), 7.70 (br. s, 1 H; NH), 7.71 (s, 1 H; H–C(9)), 7.95 (s, 1 H; H–C(6)), 8.37 ppm (br. s, 1 H; NH); 13 C NMR (150 MHz, (CD₃)₂SO): δ = 22.75 (CH₂-C(4)), 24.96 (2 C; C(3",5")), 25.56 (C(4")), 29.99 (2 C; C(2",6")), 34.72 $(C(1'')), 35.27 (CH_2-C(1')), 43.63 (CH_2NH-C(2)), 47.29 (CH_2-C(1'')), 52.71$ (CH₂CH₂-C(4)), 103.86 (C(9)), 115.26 (C(4)), 116.07 (C(8a)), 126.04 (C(4')), 128.22 (2 C; C(2',6')), 128.65 (2 C; C(3',5')), 136.71 (C(3a)), 139.28 (C(1')), 141.07 (C(9a)), 145.65 (C(4a)), 158.49 (C(6)), 161.30 (C(2)), 165.18 ppm (C(8)); IR (ATR): $\tilde{v} = 3046$ (w), 2923 (w), 2847 (w), 1622 (s), 1601 (s), 1570 (s), 1435 (m), 1362 (m), 1343 (m), 1186 (m), 1084 (m), 901 (m), 876 (m), 798 (m), 749 (m), 698 cm⁻¹ (m); HR-MALDI-MS: m/z (%): 446.2755 (28), 445.2720 (100, $[M + H]^+$, calcd for C₂₆H₃₃N₆O⁺: 445.2710).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-iodo-2-[(thien-2-ylmethyl)amino]-1*H*-benzimidazole-6-carboxylate (9a):

According to **GP 3**, starting from **8a** (1.28 g, 3.13 mmol) and iodine (925 mg, 3.76 mmol) in $CH_2Cl_2/sat.$ aq. NaHCO₃ solution 2:1 (90 mL); workup with sat. aq. Na₂S₂O₃ (35 mL) solution and CH_2Cl_2 (2x 80 mL). FC (SiO₂; cyclohexane/EtOAc 80:20) yielded **9a** (1.16 g, 70%) as a yellow solid.

 $R_{\rm f} = 0.46$ (SiO₂; cyclohexane/EtOAc 80:20, UV 254 nm); m.p. 175–176 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.89 (s, 6 H; NMe₂), 3.90 (s, 3 H; OMe), 4.99 (d, J = 5.1 Hz, 2 H; CH₂NH), 6.46 (br. s, 2 H; NH₂), 6.69 (t, J = 5.6 Hz, 1 H; NH), 7.00 (dd, J = 5.1, 3.5 Hz, 1 H; H–C(4')), 7.15 (dd, J = 3.4, 1.0 Hz, 1 H; H–C(3')), 7.27 (dd, J = 5.1, 1.2 Hz, 1 H; H–C(5')), 8.08 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 38.79 (2 C; NMe₂), 42.01 (CH₂NH), 51.85 (OMe), 73.44 (C(4)), 104.35 (C(6)), 114.35 (C(7)), 121.77 (C(7a)), 125.62 (C(5')), 126.88 and 126.92 (2 C; C(3',4')), 139.85 (C(2')), 148.65 (C(3a)), 149.75 (C(5)), 154.19 (C(2)), 168.05 ppm (C=O); IR (ATR): $\tilde{v} = 3461$ (w), 3401 (w), 3341 (w), 3117 (w), 2951 (w), 1769 (w), 1685 (m), 1631 (m), 1568 (s), 1538 (m), 1507 (m), 1446 (m), 1424 (m), 1386 (m), 1372 (m), 1334 (m), 1287 (m), 1258 (s), 1222 (m), 1186 (s), 1151 (s), 1107 (m), 1074 (m), 1032 (m), 1003 (m), 958 (s), 887 (m), 821 (m), 784 (m), 762 (m), 745 (m), 737 (m), 704 (s), 674 (m), 625 cm⁻¹ (m); HR-ESI-MS: m/z (%): 535.9920 (100, $[M + H]^+$, calcd for C₁₆H₁₉IN₅O₄S₂⁺: 535.9918), 279.1589 (24); elemental analysis calcd (%) for $C_{16}H_{18}IN_5O_4S_2$ (535.39): C 35.89, H 3.39, N 13.08; found: C 36.06, H 3.45; N 13.04.

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-iodo-2-{[2-(morpholin-4-yl)ethyl]amino}-1*H*-benzimidazole-6-carboxylate (9b):

According to **GP 3**, starting from **8b** (1.21 g, 2.84 mmol) and iodine (865 mg, 3.42 mmol) in $CH_2Cl_2/sat.$ aq. NaHCO₃ solution 2:1 (90 mL); workup with sat. aq. Na₂S₂O₃ (35 mL) solution and CH_2Cl_2 (2x 80 mL). FC (SiO₂; hexane/EtOAc 30:70 to 40:60) yielded **9b** (577 mg, 37%) as a pale brown solid.

 $R_{\rm f} = 0.44$ (SiO₂; EtOAc, UV 254 nm); m.p. 100–102 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.55$ (br. t, J = 4.2 Hz, 4 H; N(CH₂)₂), 2.67 (t, J = 5.9 Hz, 2 H; CH₂CH₂NH), 2.93 (s, 6 H; NMe₂), 3.70–3.75 (m, 6 H; CH₂NH and O(CH₂)₂), 3.89 (s, 3 H; OMe), 6.44 (br. s, 2 H; NH₂), 7.07 (t, J = 4.4 Hz, 1 H; NH), 8.06 ppm (s, 1 H; H–C(7)); 13 C NMR (100 MHz, CDCl₃): δ = 38.80 (2 C; NMe₂), 39.41 (CH₂NH), 51.80 (OMe), 53.26 (2 C; N(CH₂)₂), 56.51 (CH₂CH₂NH), 67.05 (2 C; O(CH₂)₂), 73.03 (C(4)), 104.01 (C(6)), 114.12 (C(7)), 121.82 (C(7a)), 148.58 (C(3a)), 150.04 (C(5)), 154.86 (C(2)), 168.10 ppm (C=O); IR (ATR): $\tilde{v} =$ 3459 (w), 3421 (w), 3334 (w), 2949 (w), 2866 (w), 2810 (w), 1686 (m), 1631 (w), 1568 (s), 1511 (m), 1451 (m), 1435 (m), 1422 (m), 1389 (m), 1373 (m), 1354 (m), 1286 (m), 1262 (s), 1229 (m), 1190 (s), 1155 (s), 1109 (s), 1068 (m), 1031 (s), 1020 (s), 992 (m), 968 (s), 929 (m), 912 (m), 891 (m), 827 (m), 784 (m), 736 (s), 714 (s), 707 cm⁻¹ (s); HR-ESI-MS: m/z (%): 553.0712 (100, $[M + H]^+$, calcd for $C_{17}H_{26}IN_6O_5S^+$: 553.0725), 358.2733 (81); elemental analysis calcd (%) for C₁₇H₂₅IN₆O₅S (552.39): C 36.96, H 4.56, N 15.21; found: C 37.34, H 4.57; N 14.88.

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-iodo-2-[(2-phenylethyl)amino]-1*H*-benzimidazole-6-carboxylate (9c):

According to **GP 3**, starting from **8c** (1.85 g, 4.44 mmol) and iodine (1.40 g, 5.51 mmol) in CH₂Cl₂/sat. aq. NaHCO₃ solution 2:1 (150 mL); workup with sat. aq. Na₂S₂O₃ (50 mL) solution and CH₂Cl₂ (2x 100 mL). FC (SiO₂; cyclohexane/EtOAc 80:20) yielded **9c** (2.06 g, 86%) as a red-brown foam.

*R*_f = 0.38 (SiO₂; cyclohexane/EtOAc 70:30, UV 254 nm); ¹H NMR (300 MHz, CDCl₃): δ = 2.73 (s, 6 H; NMe₂), 3.04 (t, *J* = 6.8 Hz, 2 H, CH₂–C(1')), 3.86 (s, 3 H; OMe), 3.89 (td, *J* = 6.8, 5.4 Hz, 2 H; C*H*₂NH), 6.37 (t, *J* = 5.4 Hz, 1 H; NH), 6.42 (br. s, 2 H; NH₂), 7.21–7.36 (m, 5 H; C₆H₅), 8.01 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 35.29 (*C*H₂–C(1')), 38.76 (2 C; NMe₂), 44.52 (CH₂NH), 51.92 (OMe), 73.37 (C(4)), 104.21 (C(6)), 114.27 (C(7)), 121.82 (C(7a)), 126.87 (C(4')), 128.89 (2 C; C(2',6')), 128.97 (2 C; C(3',5')), 138.57 (C(1')), 148.76 (C(3a)), 150.17 (C(5)), 154.78 (C(2)), 168.22 ppm (C=O); IR (ATR): \tilde{v} = 3469 (w), 3399 (w), 3354 (w), 3027 (w), 2948 (w), 1680 (w), 1568 (s), 1423 (m), 1391 (m), 1262 (m), 1188 (s), 1152 (s), 960 (m), 786 (w), 712 cm⁻¹ (s); HR-MALDI-MS: *m/z* (%): 545.0549 (23), 544.0516 (100, [*M*+H]⁺, calcd for C₁₉H₂₃IN₅O₄S⁺: 544.0510), 511.1757 (33), 436.0393 (72), 418.1540 (46), 310.1422 (47).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-2-[(thien-2-ylmethyl)amino]-4vinyl-1*H*-benzimidazole-6-carboxylate (11a):

According to **GP 4**, starting from **9a** (1.16 g, 2.17 mmol), vinylboronic acid pinacol ester (**10**; 0.59 mL, 3.49 mmol), and Et₃N (0.9 mL, 6.33 mmol) in DME/H₂O 5:1 (6.0 mL); [PdCl₂(PPh₃)₂] (36 mg, 0.05 mmol). Workup with aq. sat.

NaHCO₃ solution (30 mL) and EtOAc (3x 30 mL) and FC (SiO₂; cyclo-hexane/EtOAc 80:20) yielded crude **11a** (769 mg, ca. 81%) as a pale brown solid.

 $R_{\rm f} = 0.24$ (SiO₂; cyclohexane/EtOAc 80:20, UV 254 nm); m.p. 135–138 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.89$ (s, 6 H; NMe₂), 3.89 (s, 3 H; OMe), 4.95 (d, J = 5.4 Hz, 2 H; CH₂NH), 5.72 (dd, J = 11.8, 2.0 Hz, 1 H; CH=CH_E), 6.16 (br. s, 2 H; NH₂), 6.30 (dd, J = 17.8, 2.0 Hz, 1 H; CH=CH_Z), 6.67 (t, J = 5.8 Hz, 1 H; NH), 6.93 (dd, J = 17.8, 11.8 Hz, 1 H; CH=CH₂), 6.99 (dd, J = 5.1, 3.5 Hz, 1 H; H-C(4')), 7.10 (dd, J = 3.5, 1.1 Hz, 1 H; H-C(3')), 7.25 (dd, J = 5.1, 1.1 Hz, 1 H; H–C(5')), 8.05 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 38.79 (2 C; NMe₂), 41.93 (CH₂NH), 51.61 (OMe), 104.70 (C(6)), 111.37 (C(4)), 113.46 (C(7)), 119.72 (CH=CH₂), 123.40 (C(7a)), 125.46 (C(5')), 126.49 and 126.82 (2 C; C(3',4')), 128.42 (CH=CH₂), 140.39 (C(2')), 145.77 (C(3a)), 146.79 (C(5)), 154.39 (C(2)), 168.96 ppm (C=O); IR (ATR): $\tilde{v} = 3472$ (w), 3401 (w), 2949 (w), 1683 (w), 1570 (s), 1505 (w), 1451 (w), 1429 (w), 1411 (w), 1371 (m), 1334 (w), 1306 (w), 1289 (m), 1261 (m), 1207 (s), 1156 (s), 1105 (w), 1050 (m), 1032 (m), 961 (s), 884 (w), 850 (w), 822 (w), 796 (m), 772 (w), 757 (w), 743 (w), 718 (s), 700 cm⁻¹ (s); HR-ESI-MS: m/z (%): 437.1125 (23), 436.1096 (100, $[M + H]^+$, calcd for $C_{18}H_{22}N_5O_4S_2^+$: 436.1108).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-2-{[2-(morpholin-4-yl)ethyl]amino}-4-vinyl-1*H*-benzimidazole-6-carboxylate (11b):

According to **GP 4**, starting from **9b** (577 mg, 1.04 mmol), vinylboronic acid pinacol ester (**10**; 0.28 mL, 1.67 mmol), and Et₃N (0.43 mL, 3.03 mmol) in DME/H₂O 5:1 (3.0 mL); [PdCl₂(PPh₃)₂] (17 mg, 0.024 mmol). Workup with aq. sat. NaHCO₃ solution (15 mL) and EtOAc (3x 15 mL) and FC (SiO₂; cyclohexane/EtOAc 30:70) yielded crude **11b** (368 mg, 78 %) as a pale brown solid. $R_{\rm f} = 0.25$ (SiO₂; cyclohexane/EtOAc 30:70, UV 254 nm); ¹H NMR (400 MHz, CDCl₃): $\delta = 2.54$ (t, J = 4.4 Hz, 4 H; N(CH₂)₂), 2.67 (t, J = 6.0 Hz, 2 H;

CH₂CH₂NH), 2.93 (s, 6 H; NMe₂), 3.68 (q, J = 5.5 Hz, 2 H; CH₂NH), 3.75 (t, J = 4.6 Hz, 4 H; O(CH₂)₂), 3.88 (s, 3 H; OMe), 5.68 (dd, J = 11.8, 2.1 Hz, 1 H; CH=CH_E), 6.16 (br. s, 2 H; NH₂), 6.20 (dd, J = 17.9, 2.1 Hz, 1 H; CH=CH_Z), 6.92 (dd, J = 17.9, 11.8 Hz, 1 H; CH=CH₂), 6.99 (t, J = 4.8 Hz, 1 H; NH), 8.04 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): $\delta = 38.81$ (2 C; NMe₂), 39.41 (CH₂NH), 51.58 (OMe), 53.28 (2 C; N(CH₂)₂), 56.55 (CH₂CH₂NH), 67.04 (2 C; O(CH₂)₂), 104.31 (C(6)), 110.99 (C(4)), 113.27 (C(7)), 119.41 (CH=CH₂), 123.42 (C(7a)), 128.68 (CH=CH₂), 146.18 (C(3a)), 146.76 (C(5)), 155.01 (C(2)), 169.03 ppm (C=O); IR (ATR): $\tilde{v} = 3359$ (w), 2948 (w), 1683 (w), 1640 (w), 1579 (s), 1455 (w), 1429 (m), 1385 (m), 1347 (m), 1271 (m), 1205 (m), 1155 (s), 1115 (m), 1051 (m), 964 (m), 914 (w), 854 (w), 796 (w), 748 (m), 713 cm⁻¹ (s); HR-ESI-MS: *m/z* (%): 453.1905 (100, [*M* + H]⁺, calcd for C₁₉H₂₉N₆O₅S⁺: 453.1915), 454.1936 (27).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-2-[(2-phenylethyl)amino]-4-vinyl-1*H*-benzimidazole-6-carboxylate (11c):

According to **GP 4**, starting from **9c** (1.35 g, 2.49 mmol), vinylboronic acid pinacol ester (**10**; 0.67 mL, 3.98 mmol), and Et₃N (1.02 mL, 7.22 mmol) in DME/H₂O 5:1 (6.0 mL); [PdCl₂(PPh₃)₂] (41 mg, 0.06 mmol). Workup with aq. sat. NaHCO₃ solution (30 mL) and EtOAc (3x 30 mL) and FC (SiO₂; cyclohexane/EtOAc 80:20 to 70:30) yielded **11c** (920 mg, 83%) as a green oil.

 $R_{\rm f} = 0.23$ (SiO₂; cyclohexane/EtOAc 80:20, UV 254 nm); ¹H NMR (300 MHz, CDCl₃): $\delta = 2.74$ (s, 6 H; NMe₂), 3.02 (t, J = 7.0 Hz, 2 H; CH₂–C(1')), 3.84 (td, J = 7.0, 5.4 Hz, 2 H; CH₂NH), 3.85 (s, 3 H; OMe), 5.69 (dd, J = 11.8, 2.1 Hz, 1 H; CH=CH_E), 6.13 (br. s, 2 H; NH₂), 6.25 (dd, J = 17.8, 2.1 Hz, 1 H; CH=CH_Z), 6.34 (t, J = 5.4 Hz, 1 H; NH), 6.92 (dd, J = 17.8, 11.8 Hz, 1 H; CH=CH₂), 7.20–7.35 (m, 5 H; C₆H₅), 7.99 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): $\delta = 35.39$ (CH₂–C(1')), 38.78 (2 C; NMe₂), 44.49 (CH₂NH), 51.68 (OMe), 104.55 (C(6)),

111.24 (C(4)), 113.43 (C(7)), 119.57 (CH=*C*H₂), 123.45 (C(7a)), 126.82 (CH=CH₂), 128.75 (C(4')), 128.86 (2 C; C(2',6')), 128.94 (2 C; C(3',5')), 138.73 (C(1')), 146.31 (C(3a)), 146.94 (C(5)), 154.98 (C(2)), 169.14 ppm (C=O); IR (ATR): $\tilde{\nu} = 3477$ (w), 3424 (w), 3343 (w), 3021 (w), 2867 (w), 1682 (w), 1576 (s), 1498 (w), 1431 (m), 1386 (m), 1263 (m), 1210 (s), 1140 (s), 1024 (w), 953 (m), 901 (w), 797 (w), 705 cm⁻¹ (s); HR-MALDI-MS: *m/z* (%): 444.1701 (50, $[M + H]^+$, calcd for C₁₄H₂₀N₅O₄S⁺: 444.1700), 336.1578 (100), 235.0713 (21), 232.0954 (24).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-(2-hydroxyethyl)-2-[(thien-2-ylmethyl)amino]-1*H*-benzimidazole-6-carboxylate (12a):

According to **GP 5**, starting from **11a** (769 mg, 1.76 mmol) and a 0.5 M solution 9-BBN in THF (10.5 mL, 5.25 mmol); 30 % H_2O_2 in H_2O (1.80 mL, 17.6 mmol) and 1 M aq NaOH solution (18.2 ml, 17.6 mmol). Workup with sat. aq. NH₄Cl solution (50 mL) and EtOAc (3x 50 mL) and FC (SiO₂; cyclohexane/EtOAc 50:50 to 40:60) yielded crude **12a** (439 mg, 55%) as a yellow solid.

*R*_f = 0.26 (SiO₂; cyclohexane/EtOAc 50:50, UV 254 nm); m.p. 130–132 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.60–1.86 (br. s, 1 H; OH), 2.89 (s, 6 H; NMe₂), 3.04 (t, *J* = 5.6 Hz, 2 H; C*H*₂CH₂OH), 3.88 (s, 3 H; OMe), 4.04 (t, *J* = 5.6 Hz, 2 H; CH₂C*H*₂OH), 4.89 (d, *J* = 5.5 Hz, 2 H; C*H*₂NH), 5.97 (br. s, 2 H; NH₂), 6.73 (t, *J* = 5.7 Hz, 1 H; NH), 6.97 (dd, *J* = 5.1, 3.5 Hz, 1 H; H–C(4')), 7.09 (dd, *J* = 3.5, 1.1 Hz, 1 H; H–C(3')), 7.24 (dd, *J* = 5.1, 1.1 Hz, 1 H; H–C(5')), 8.03 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 29.47 (CH₂CH₂OH), 38.77 (2 C; NMe₂), 41.98 (CH₂NH), 51.62 (OMe), 61.80 (CH₂OH), 105.16 (C(6)), 112.22 (C(4)), 112.55 (C(7)), 123.04 (C(7a)), 125.47 (C(5')), 126.51 and 126.89 (2 C; C(3',4')), 140.15 (C(2')), 145.84 (C(3a)), 147.55 (C(5)), 153.93 (C(2)), 169.00 ppm (C=O); IR (ATR): $\tilde{\nu}$ = 3372 (w), 2948 (w), 1683 (w), 1574 (s), 1504 (w), 1456 (w), 1426 (m), 1370 (m), 1273 (m), 1202 (s), 1152 (s), 1077 (m), 1036 (m), 963 (s), 891 (w), 852 (m), 791 (m), 743 (m), 706 (s), 615 cm⁻¹ (m); HR-ESI-MS: *m/z* (%): 455.1243 (24), 454.1207 (100, $[M + H]^+$, calcd for C₁₈H₂₄N₅O₅S₂⁺: 454.1213); elemental analysis: calcd (%) for C₁₈H₂₃N₅O₅S₂ (453.54): C 47.67, H 5.11; found: C 47.84, H 5.31.

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-(2-hydroxyethyl)-2-{[(2-morpholin-4-yl)ethyl]amino}-1*H*-benzimidazole-6-carboxylate (12b):

According to **GP 5**, starting from **11b** (368 mg, 0.81 mmol) and a 0.5 M solution of 9-BBN in THF (4.9 mL, 2.45 mmol); 30 % H_2O_2 in H_2O (0.82 mL, 8.10 mmol) and 1 M aq NaOH solution (4.4 mL, 8.10 mmol). Workup with sat. aq. NH₄Cl solution (25 mL) and EtOAc (3x 25 mL) and FC (SiO₂; EtOAc/MeOH 95:5) yielded crude **12b** (176 mg, 46%) as a brown solid.

*R*_f = 0.19 (SiO₂; EtOAc/MeOH 95:5, UV 254 nm); m.p. 52–54 °C; ¹H NMR (400 MHz, CDCl₃): δ = 1.48–1.78 (br. s, 1 H; OH), 2.54 (br. s, 4 H; N(CH₂)₂), 2.67 (t, *J* = 5.9 Hz, 2 H; C*H*₂CH₂NH), 2.96 (s, 6 H; NMe₂), 2.99 (t, *J* = 5.6 Hz, 2 H; C*H*₂CH₂OH), 3.61 (q, *J* = 5.5 Hz, 2 H; C*H*₂NH), 3.75 (br. t, *J* = 4.4 Hz, 4 H; O(CH₂)₂), 3.89 (s, 3 H; OMe), 4.02 (t, *J* = 5.6 Hz, 2 H; C*H*₂OH), 7.03 (t, *J* = 4.8 Hz, 1 H; NH), 8.03 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 29.53 (*C*H₂CH₂OH), 38.79 (2 C; NMe₂), 39.44 (CH₂NH), 51.61 (OMe), 53.23 (2 C; N(CH₂)₂), 56.26 (*C*H₂CH₂NH), 61.71 (CH₂CH₂OH), 66.95 (2 C; O(CH₂)₂), 104.90 (C(6)), 111.95 (C(4)), 112.39 (C(7)), 123.09 (C(7a)), 145.90 (C(3a)), 147.36 (C(5)), 154.40 (C(2)), 169.05 ppm (C=O); IR (ATR): \tilde{v} = 3361 (w), 2949 (w), 2855 (w), 1683 (w), 1581 (s), 1455 (m), 1035 (m), 961 (m), 914 (m), 858 (m), 792 (m), 745 (m), 714 cm⁻¹ (s); HR-ESI-MS: *m/z* (%): 472.2038 (27), 471.2008 (100, [*M* + H]⁺, calcd for C₁9H₃₁N₆O₆S⁺: 471.2020).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-(2-hydroxyethyl)-2-[(2-phenylethyl)amino]-1*H*-benzimidazole-6-carboxylate (12c):

According to **GP 5**, starting from **11c** (403 mg, 0.91 mmol) and a 0.5 M solution of 9-BBN in THF (1.8 mL, 0.91 mmol); 30 % H_2O_2 in H_2O (0.46 mL, 4.5 mmol) and 1 M aq NaOH solution (4.5 mL, 4.5 mmol). Workup with sat. aq. NH₄Cl solution (30 mL) and EtOAc (3x 30 mL) and FC (SiO₂; cyclohexane/EtOAc 50:50 to 0:100) yielded **12c** (250 mg, 60%) as a yellow solid.

*R*_f = 0.20 (SiO₂; cyclohexane/EtOAc 50:50, UV 254 nm); m.p. 118–120 °C; ¹H NMR (300 MHz, CDCl₃): δ = 1.52–1.73 (br. s, 1 H; OH), 2.75 (s, 6 H; NMe₂), 2.97–3.03 (m, 4 H; 2 CH₂), 3.78 (td, *J* = 6.9, 5.5 Hz, 2 H; CH₂NH), 3.85 (s, 3 H; OMe), 4.03 (t, *J* = 5.5 Hz, 2 H; CH₂OH), 5.94 (br. s, 2 H; NH₂), 6.37 (t, *J* = 5.5 Hz, 1 H; NH), 7.20–7.35 (m, 5 H; C₆H₅), 7.97 ppm (s, 1 H; H–C(7)); ¹³C NMR (75 MHz, CDCl₃): δ = 29.82 (*C*H₂CH₂OH), 35.32 (2 C; NMe₂), 38.84 (*C*H₂CH₂NH), 44.56 (CH₂NH), 51.79 (OMe), 61.84 (CH₂OH), 104.94 (C(6)), 112.09 (C(4)), 112.41 (C(7)), 122.93 (C(7a)), 126.76 (C(4')), 128.78 (2 C; C(2',6')), 128.81 (2 C; C(3',5')), 138.32 (C(1')), 145.83 (C(3a)), 147.39 (C(5)), 154.21 (C(2)), 168.97 ppm (C=O); IR (ATR): $\tilde{\nu}$ = 3468 (w), 3402 (w), 3342 (w), 1686 (m), 1569 (s), 1453 (w), 1425 (m), 1368 (m), 1266 (m), 1192 (s), 1150 (s), 967 (m), 787 (w), 719 cm⁻¹ (s); HR-MALDI-MS: *m/z* (%): 463.1832 (26), 462.1800 (100, [*M* + H]⁺, calcd for C₂₁H₂₈N₅O₅S⁺: 462.1806), 355.1758 (98), 354.1683 (85). Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-(2-phthalimidoethyl)-2-[(thien-2-yl-methyl)amino]-1*H*-benzimidazole-6-carboxylate (13a):

According to **GP 6**, starting from PPh₃ (508 mg, 1.93 mmol) in anhydrous THF (4.4 mL), DIAD (0.39 mL; 1.94 mmol), **12a** (439 mg, 0.96 mmol), and phthalimide (288 mg, 1.95 mmol) in anhydrous THF (7 mL). FC (SiO₂; cyclohexane/EtOAc 70:30 to 60:40), yielded **13a** (386 mg, 69 %) as a yellow solid.

 $R_{\rm f} = 0.44$ (SiO₂; cyclohexane/EtOAc 50:50, UV 254 nm); m.p. 215–218 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.84$ (s, 6 H; NMe₂), 3.26 (t, $J \approx 7.6$ Hz, 2 H; CH₂-C(4)), 3.88 (s, 3 H; OMe), 3.98 (t, $J \approx 7.6$ Hz, 2 H; CH₂CH₂-C(4)), 4.81 (d, J = 5.6 Hz, 2 H; CH₂NH), 6.29 (br. s, 2 H; NH₂), 6.52 (t, J = 5.7 Hz, 1 H; NH), 6.99 (dd, J = 5.1, 3.5 Hz, 1 H; H–C(4')), 7.12 (dd, J = 3.5, 1.0 Hz, 1 H; H–C(3')), 7.25 (dd, J = 5.1, 1.0 Hz, 1 H; H–C(5')), 7.68–7.76 (m, 2 H; H–C(4",5")), 7.81–7.89 (m, 2 H; H–C(3",6")), 8.02 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): $\delta = 24.27$ (CH₂-C(4)), 35.84 (CH₂CH₂-C(4)), 38.79 (2 C; NMe₂), 41.79 (CH₂NH), 51.51 (OMe), 104.50 (C(6)), 109.76 (C(4)), 112.98 (C(7)), 122.82 (C(7a)), 123.16 (2 C; C(3",6")), 125.44 (C(5')), 126.71 and 126.80 (2 C; C(3',4')), 132.30 (2 C; C(1",2")), 133.87 (2 C; C(4",5")), 140.32 (C(2')), 147.02 (C(3a)), 147.42 (C(5)), 154.16 (C(2)), 168.43 (2 C; N(C=O)₂), 169.04 ppm (C=O); IR (ATR): $\tilde{v} = 3463$ (w), 3415 (w), 3347 (w), 2944 (w), 1767 (w), 1702 (s), 1640 (w), 1582 (s), 1502 (w), 1466 (w), 1425 (m), 1395 (m), 1368 (m), 1356 (m), 1341 (m), 1314 (w), 1295 (w), 1272 (s), 1196 (m), 1142 (s), 1114 (s), 1050 (s), 964 (s), 940 (m), 892 (m), 868 (w), 856 (w), 837 (w), 810 (w), 792 (m), 769 (w), 743 (m), 710 (s), 666 (m), 621 cm⁻¹ (m); HR-ESI-MS: m/z (%): 584.1442 (35), 583.1409 (100, $[M + H]^+$, calcd for C₂₆H₂₇N₆O₆S₂⁺: 583.1428).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-(2-phthalimidoethyl)-2-{[(2-morpholin-4-yl)ethyl]amino}-1*H*-benzimidazole-6-carboxylate (13b):

According to **GP 6**, starting from PPh₃ (144 mg, 0.71 mmol) in anhydrous THF (2.0 mL), DIAD (0.14 mL; 0.71 mmol), **12b** (167 mg, 0.36 mmol), and phthalimide (105 mg, 0.71 mmol) in anhydrous THF (2.0 mL). MPLC (SiO₂; CH₂Cl₂/EtOAc 100:0 to 0:100 within 30 min, 0:100 for 12 min) yielded **13b** (150 mg, 71%) as a yellow foam.

 $R_{\rm f} = 0.18$ (SiO₂; EtOAc, UV 254 nm); m.p. 96–97 °C; ¹H NMR (400 MHz, CDCl₃): δ = 2.46–2.56 (m, 4 H; N(CH₂)₂), 2.60 (t, J = 5.7 Hz, 2 H; CH₂CH₂NH), 2.87 (s, 6 H; NMe₂), 3.17 (t, J = 7.7 Hz, 2 H; CH₂–C(4)), 3.54 (g, J = 5.4 Hz, 2 H; CH_2NH), 3.72 (br. t, J = 4.4 Hz, 4 H; O(CH₂)₂), 3.85 (s, 3 H; OMe), 3.92 (t, J = 7.7 Hz, 2 H; $CH_2CH_2-C(4)$), 6.25 (br. s, 2 H; NH₂), 6.79 (t, J = 4.9 Hz, 1 H; NH), 7.68–7.74 (m, 2 H; H–C(4',5')), 7.80–7.85 (m, 2 H; H–C(3',6')), 7.98 ppm (s, ¹³C NMR (100 MHz, CDCl₃): $\delta = 24.38$ (CH₂-C(4)), 35.91 1 H; H–C(7)); (CH₂CH₂-C(4)), 38.95 (2 C; NMe₂), 39.41 (CH₂NH), 51.62 (OMe), 53.45 (2 C; N(CH₂)₂), 56.79 (CH₂CH₂NH), 61.17 (2 C; O(CH₂)₂), 104.29 (C(6)), 109.47 (C(4)), 112.94 (C(7)), 123.01 (C(7a)), 123.29 (2 C; C(3',6')), 132.46 (2 C; C(1',2')), 133.97 (2 C; C(4',5')), 147.55 (2 C; C(3a,5)), 154.95 (C(2)), 168.56 (2 C; N(C=O)₂), 169.24 ppm (C=O); IR (ATR): $\tilde{v} = 3476$ (w), 3363 (w), 2948 (w), 2860 (w), 2811 (w), 1771 (w), 1707 (s), 1585 (s), 1456 (w), 1428 (m), 1393 (m), 1349 (m), 1274 (m), 1204 (m), 1155 (m), 1114 (m), 1067 (m), 960 (m), 792 (m), 715 cm⁻¹ (s); HR-ESI-MS: m/z (%): 601.2249 (38), 600.2216 (100, $[M + H]^+$, calcd for $C_{27}H_{34}N_7O_7S^+$: 600.2235), 358.2739 (36), 334.2161 (47), 295.1324 (42), 279.1376 (26), 239.1061 (21), 217.0828 (21), 177.0901 (26).

Methyl 5-Amino-1-(*N*,*N*-dimethylsulfamoyl)-4-(2-phthalimidoethyl)-2-[(2-phenylethyl)amino]-1*H*-benzimidazole-6-carboxylate (13c):

According to **GP 6**, starting from PPh₃ (696 mg, 2.65 mmol) in anhydrous THF (6.0 mL), DIAD (0.53 mL, 2.67 mmol), **12c** (613 mg, 1.33 mmol), and phthalimide (394 mg, 2.68 mmol) in anhydrous THF (10 mL). FC (SiO₂; cyclohexane/AcOEt 67:33 to 50:50) yielded **13c** (733 mg, 93%) as a yellow solid.

 $R_{\rm f} = 0.54$ (SiO₂; cyclohexane/EtOAc 50:50, UV 254 nm); m.p. 192–193 °C; ¹H NMR (400 MHz, CDCl₃): $\delta = 2.71$ (s, 6 H; NMe₂), 2.97 (t, J = 6.9 Hz, 2 H; CH_2 -C(4)), 3.22 (t, J = 6.8 Hz, 2 H; CH_2 -C(1')), 3.70 (td, J = 6.9, 5.6 Hz, 2 H; CH_2NH), 3.85 (s, 3 H; OMe), 3.96 (t, J = 6.8 Hz, 2 H; $CH_2CH_2-C(4)$), 6.21 (br. t, $J \approx 5.6$ Hz, 1 H; NH), 6.24 (br. s, 2 H; NH₂), 7.21–7.35 (m, 5 H; C₆H₅), 7.66–7.71 (m, 2 H; H–C(4",5")), 7.77–7.83 (m, 2 H; H–C(3",6"), 7.80 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 24.40 (CH₂-C(4)), 35.43 (CH₂-C(1')), 35.95 (CH₂CH₂-C(4)), 38.77 (2 C; NMe₂), 44.33 (CH₂NH), 51.57 (OMe), 104.35 (C(6)), 109.68 (C(4)), 112.92 (C(7)), 122.86 (C(7a)), 123.25 (2 C; C(3",6")), 126.72 (C(4')), 128.80 (2 C; C(2',6')), 129.00 (2 C; C(3',5')), 132.45 (2 C; C(1",2")), 133.91 (2 C; C(4",5")), 138.81 (C(1')), 147.53 (C(3a)), 147.55 (C(5)), 154.76 (C(2)), 168.50 (2 C; N(C=O)₂), 169.19 ppm (C=O); IR (ATR): $\tilde{v} = 3388$ (w), 3030 (w), 2946 (w), 1771 (w), 1710 (m), 1684 (w), 1591 (s), 1516 (w), 1427 (m), 1392 (m), 1273 (m), 1208 (s), 1154 (s), 1106 (m), 1068 (w), 955 (m), 794 cm^{-1} (w); HR-MALDI-MS: m/z (%): 592.2051 (24), 591.2020 (68, [M + H]+, calcd for $C_{29}H_{31}N_6O_6S^+$: 591.2020), 483.1906 (100); elemental analysis calcd (%) for C₂₉H₃₀N₆O₆S (590.66): C 58.97, H 5.12, N 14.23; found C 58.77, H 5.16, N 14.04.

Methyl 5-Amino-4-(2-aminoethyl)-1-(*N*,*N*-dimethylsulfamoyl)-2-[(thien-2-ylmethyl)amino]-1*H*-benzimidazole-6-carboxylate (14a):

According to **GP 7**, starting from **13a** (386 mg, 0.66 mmol) and hydrazine monohydrate (0.32 mL, 6.66 mmol) in MeOH/THF 95:5 (14 mL). Workup with 1 M aq. NaOH solution (54 mL) and CH_2Cl_2 (3x 50 mL) yielded crude **14a** (300 mg, 99%) as a yellow solid.

*R*_f = 0.14 (SiO₂; CH₂Cl₂/MeOH/25% aq. NH₃ 94:5:1, UV 254 nm); ¹H NMR (400 MHz, CDCl₃): δ = 2.88 (s, 6 H; NMe₂), 3.04–3.10 (m; 4 H; CH₂CH₂–C(4)), 3.88 (s, 3 H; OMe), 4.92 (d, *J* = 5.5 Hz, 2 H; CH₂NH–C(2)), 6.64 (t, *J* = 5.8 Hz, 1 H; NH), 6.98 (dd, *J* = 5.1, 3.5 Hz, 1 H; H–C(4')), 7.09 (br. d, *J* = 3.5 Hz, 1 H; H–C(3')), 7.24 (dd, *J* = 5.1, 1.2 Hz, 1 H; H–C(5')), 8.01 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 29.51 (CH₂–C(4)), 38.76 (2 C; NMe₂), 41.06 (CH₂CH₂–C(4)), 41.88 (CH₂NH), 51.54 (OMe), 104.85 (C(6)), 112.33 (C(4)), 112.59 (C(7)), 123.11 (C(7a)), 125.41 (C(5')), 126.37 and 126.76 (2 C; C(3',4')), 140.61 (C(2')), 146.97 (C(3a)), 147.57 (C(5)), 154.06 (C(2)), 169.11 ppm (C=O); IR (ATR): $\tilde{\nu}$ = 3398 (w), 3348 (w), 2925 (w), 1682 (m), 1582 (s), 1502 (w), 1455 (m), 1425 (m), 1388 (m), 1366 (m), 1334 (w), 1273 (m), 1245 (m), 1201 (s), 1153 (s), 1100 (m), 1036 (m), 965 (m), 901 (m), 859 (w), 839 (m), 791 (m), 761 (w), 743 (m), 721 (s), 646 (w), 615 cm⁻¹ (m); HR-ESI-MS: *m/z* (%): 454.1408 (23), 453.1382 (100, [*M* + H]⁺, calcd for C₁₈H₂₅N₆O₄S₂⁺: 453.1373).

Methyl 5-Amino-4-(2-aminoethyl)-1-(*N*,*N*-dimethylsulfamoyl)-2-{[(2-morpholin-4-yl)ethyl]amino}-1*H*-benzimidazole-6-carboxylate (14b):

According to **GP 7**, starting from **13b** (150 mg, 0.25 mmol) and hydrazine monohydrate (122 μ L, 2.50 mmol) in MeOH/THF 95:5 (14 mL). Workup with 1 M aq. NaOH solution (54 mL) and CH₂Cl₂ (3x 50 mL) yielded **14b** (109 mg, 93%) as a yellow solid.

¹H NMR (400 MHz, CDCl₃; assignments based on a DQF-COSY spectrum): $\delta = 2.51$ (br. t, J = 4.4 Hz, 4 H; N(CH₂)₂), 2.63 (t, J = 6.0 Hz, 2 H; CH₂CH₂NH), 2.92 (s, 6 H; NMe₂), 2.97–3.07 (m, 4 H; CH₂CH₂–C(4)), 3.62 (q, J = 5.6 Hz, 2 H; CH₂NH), 3.72 (br. t, J = 4.4 Hz, 4 H; O(CH₂)₂), 3.85 (s, 3 H; OMe), 6.88 (t, J = 4.6 Hz, 1 H; NH), 7.97 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃; assignments based on a DEPT and a HSQC spectrum): $\delta = 29.39$ (CH₂–C(4)), 38.79 (2 C; NMe₂), 39.43 (CH₂NH), 40.98 (CH₂CH₂–C(4)), 51.51 (OMe), 53.30 (2 C; N(CH₂)₂), 56.60 (CH₂CH₂NH), 67.04 (2 C; O(CH₂)₂), 104.49 (C(6)), 112.14 (2 C; C(4,7)), 123.16 (C(7a)), 147.32 (C(3a)), 147.55 (C(5)), 154.64 (C(2)), 169.17 ppm (C=O); IR (ATR): $\tilde{\nu} = 3419$ (w), 3366 (w), 2950 (w), 2855 (w), 1683 (w), 1585 (s), 1456 (w), 1431 (m), 1392 (w), 1349 (w), 1274 (m), 1207 (m), 1156 (m), 1115 (m), 1051 (w), 966 (w), 906 (s), 794 (w), 725 (s), 647 cm⁻¹ (m); HR-ESI-MS: m/z (%): 471.2210 (29), 470.2183 (100, $[M + H]^+$, calcd for C₁₉H₃₂N₇O₅S⁺: 470.2180). Methyl 5-Amino-4-(2-aminoethyl)-1-(*N*,*N*-dimethylsulfamoyl)-2-[(2-phenylethyl)amino]-1*H*-benzimidazole-6-carboxylate (14c):

According to **GP 7**, starting from **13c** (714 mg, 1.21 mmol) and hydrazine monohydrate (0.59 mL, 12.2 mmol) in MeOH/THF 95:5 (30 mL). Workup with 1 M aq. NaOH solution (100 mL) and CH_2Cl_2 (3x 100 mL) yielded **14c** (452 mg, 81%) as a pale yellow solid.

*R*_f = 0.16 (SiO₂; CH₂Cl₂/MeOH/25% aq. NH₃ 94:5:1); ¹H NMR (300 MHz, CDCl₃): δ = 2.72 (s, 6 H; NMe₂), 2.96–3.01 (m, 6 H; CH₂CH₂–C(4), CH₂–C(1')), 3.80 (td, *J* = 6.8, 5.5 Hz, 2 H; C*H*₂NH), 3.82 (s, 3 H; OMe), 6.28 (t, *J* = 5.5 Hz, 1 H; NH), 7.17–7.32 (m, 5 H; C₆H₅), 7.93 ppm (s, 1 H; H–C(7)); ¹³C NMR (75 MHz, CDCl₃): δ = 29.45 (*C*H₂–C(4)), 35.23 (*C*H₂–C(1')), 38.62 (2 C; NMe₂), 41.05 (*C*H₂CH₂–C(4)), 44.24 (CH₂NH), 51.50 (OMe), 104.42 (C(6)), 112.08 (2 C; C(4,7)), 122.97 (C(7a)), 126.62 (C(4')), 128.66 (2 C; C(2',6')), 128.77 (2 C; C(3',5')), 138.65 (C(1')), 147.27 (C(3a)), 147.58 (C(5)), 154.40 (C(2)), 169.12 ppm (C=O); IR (ATR): $\tilde{\nu}$ = 3408 (w), 2947 (w), 1682 (w), 1574 (s), 1426 (m), 1362 (w), 1270 (m), 1201 (s), 1150 (s), 1046 (w), 961 (m), 792 (w), 742 (w), 700 cm⁻¹ (m); HR-MALDI-MS: *m/z* (%): 501.2270 (100), 461.1961 (83, [*M* + H]⁺, calcd for C₂₁H₂₉N₆O₄S⁺: 461.1966), 393.2145 (53), 353.1842 (75).

Methyl 5-Amino-4-{2-[(cyclohexylmethyl)amino]ethyl}-1-(*N*,*N*dimethylsulfamoyl)-2-[(thien-2-ylmethyl)amino]-1*H*-benzimidazole-6carboxylate (15a):

According to **GP 8**, starting from **14a** (300 mg, 0.66 mmol) and cyclohexanecarbaldehyde (83 μ L, 0.66 mmol) in anhydrous CH₂Cl₂ (9.0 mL) over 4 Å molecular sieves (ca. 400 mg), then with NaBH(OAc)₃ (562 mg, 2.64 mmol). Workup with aq. 2 M NH₃ solution (30 mL) and EtOAc (3x 30 mL), FC (SiO₂; CH₂Cl₂/MeOH 98:2 to 93:7), and lyophilization from *t*BuOH yielded **15a** (190 mg, 52%) as a yellow oil.

 $R_{\rm f} = 0.38$ (SiO₂; CH₂Cl₂/MeOH/25% aq. NH₃ 95:4:1, UV 254 nm); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.91$ (qd, J = 12.1, 2.6 Hz, 2 H; H_{ax}-C(2",6")), 1.14-1.28 (m, 3 H; H_{ax}-C(3",4",5")), 1.52-1.54 (m, 1 H; H-C(1")), 1.62-1.80 (m, 5 H; H_{ea} -C(2"-6")), 2.57 (d, J = 6.7 Hz; CH₂-C(1")), 2.88 (s, 6 H; NMe₂), 3.00 (t, J =6.6 Hz, 2 H; CH₂-C(4)), 3.15 (t, J = 6.7 Hz, 2 H; CH₂CH₂-C(4)), 3.87 (s, 3 H; OMe), 4.93 (d, J = 5.5 Hz, 2 H; CH_2 NH–C(2)), 6.63 (t, J = 5.8 Hz, 1 H; NH–C(2)), 6.98 (dd, J = 5.1, 3.5 Hz, 1 H; H–C(4')), 7.09 (br. d, J = 3.5 Hz, 1 H; H–C(3')), 7.24 (dd, J = 5.1, 1.2 Hz, 1 H; H–C(5')), 7.99 ppm (s, 1 H; H–C(7)); ¹³C NMR (100 MHz, CDCl₃): δ = 25.59 (CH₂-C(4)), 25.95 (2 C; C(3",5")), 26.54 (C(4"), 31.35 (2 C; C(2",6")), 37.47 (C(1")), 38.77 (2 C; NMe₂), 41.91 (CH₂NH-C(2)), 48.69 (CH₂CH₂-C(4)), 51.50 (OMe), 56.22 (CH₂-C(1")), 104.75 (C(6)), 112.42 (2 C; C(4,7)), 122.91 (C(7a)), 125.42 (C(5')), 126.42 and 126.79 (2 C; C(3',4')), 140.52 (C(2')), 146.60 (C(3a)), 148.01 (C(5)), 154.02 (C(2)), 169.06 ppm (C=O); IR (ATR): $\tilde{v} = 3406$ (w), 2922 (w), 2850 (w), 1685 (w), 1574 (s), 1504 (w), 1426 (m), 1392 (m), 1371 (m), 1272 (m), 1202 (s), 1153 (s), 1100 (m), 1034 (w), 964 (m), 892 (w), 852 (w), 793 (m), 734 (s), 702 (s), 618 cm⁻¹ (m); HR-ESI-MS: m/z (%): 550.2350 (30), 549.2322 (100, $[M + H]^+$, calcd for $C_{25}H_{37}N_6O_4S_2^+$: 549.2312).

Methyl 5-Amino-4-{2-[(cyclohexylmethyl)amino]ethyl}-1-(*N*,*N*-dimethylsulfamoyl)-2-{[2-(morpholin-4-yl)ethyl]amino}-1*H*-benzimidazole-6-carboxylate (15b):

According to GP 8, starting from 14b (105 mg, 0.22 mmol) and cyclohexanecarbaldehyde (28 µL, 0.22 mmol) in anhydrous CH₂Cl₂ (3.0 mL) over 4 Å molecular sieves (ca. 200 mg), then with NaBH(OAc)₃ (190 mg, 0.89 mmol). Workup with aq. 2 M NH₃ solution (10 mL) and EtOAc (3x 10 mL), MPLC (SiO₂; CH₂Cl₂/MeOH/Et₃N 100:0:0 to 80:19.4:0.6 within 60 min), and lyophilization from *t*BuOH yielded crude **15b** (58 mg, ca. 46%; purity: ca. 85%) as a yellow oil. $R_{\rm f} = 0.40$ (SiO₂; CH₂Cl₂/MeOH/Et₃N 90:9.9:0.1, UV 254 nm); ¹H NMR (400 MHz, CDCl₃): $\delta = 0.87$ (qd, J = 12.0, 2.8 Hz, 2 H; H_{ax}-C(2',6')), 1.08-1.30 $(m, 3 H; H_{ax}-C(3',4',5')), 1.36-1.54 (m, 1 H; H-C(1')), 1.60-1.72 (m, 5 H;$ H_{ed} -C(2'-6')), 2.46-2.50 (m, 2 H; CH₂-C(1')), 2.50 (br. t, J = 4.2 Hz, 4 H; $N(CH_2)_2$, 2.63 (t, J = 6.0 Hz, 2 H; $CH_2CH_2NH-C(2)$), 2.86–2.93 (m, 2 H; CH₂-C(4)), 2.90 (s, 6 H; NMe₂), 3.02 (t, J = 6.4 Hz, 2 H; CH₂CH₂-C(4)), 3.62 (q, J = 5.6 Hz, 2 H; CH₂NH–C(2)), 3.71 (br. t, J = 4.6 Hz, 4 H; O(CH₂)₂), 3.84 (s, 3 H; OMe), 6.89 (t, J = 4.8 Hz, 1 H; NH–C(2)), 7.95 ppm (s, 1 H; H–C(7)); IR (ATR): $\tilde{v} = 3410$ (w), 3362 (w), 2921 (w), 2850 (w), 1684 (w), 1585 (s), 1476 (w), 1455 (w), 1429 (m), 1379 (w), 1348 (w), 1274 (m), 1203 (m), 1157 (m), 1117 (m), 1055 (w), 964 (w), 912 (w), 793 (w), 717 cm⁻¹ (m); HR-ESI-MS: m/z (%): 567.3143 (28), 566.3115 (100, [M + H]+, calcd for C₂₆H₄₄N₇O₅S⁺: 566.3119).

Methyl 5-Amino-4-{2-[(cyclohexylmethyl)amino]ethyl}-1-(*N*,*N*-dimethylsulfamoyl)-2-[(2-phenylethyl)amino]-1*H*-benzimidazole-6-carboxylate (15c):

According to **GP 8**, starting from **14c** (314 mg, 0.68 mmol) and cyclohexanecarbaldehyde (84 μ L,0.68 mmol) in anhydrous CH₂Cl₂ (9.0 mL) over 4 Å molecular sieves (ca. 300 mg), then with NaBH(OAc)₃ (576 mg, 2.70 mmol). Workup with aq. 2 M NH₃ solution (30 mL) and EtOAc (3x 30 mL), FC (SiO₂; CH₂Cl₂/MeOH 98:2 to 95:5), and lyophilization from *t*BuOH yielded **15c** (273 mg, 72%) as a yellow oil.

¹H NMR (300 MHz, CDCl₃): $\delta = 0.87$ (qd, J = 15.9, 3.8 Hz, 2 H; H_{ax}-C(2",6")), 1.10-1.30 (m, 3 H; H_{ax}-C(3",4",5")), 1.36-1.51 (m, 1 H; H-C(1")), 1.62-1.77 (m, 5 H; H_{eq} -C(2"-6")), 2.49 (d, J = 6.7 Hz, 2 H; CH₂-C(1")), 2.74 (s, 6 H; NMe₂), 2.90 (t, J = 6.4 Hz, 2 H; CH₂-C(4)), 2.98-3.07 (m, 4 H; CH₂CH₂-C(4)) $CH_2-C(1')$, 3.82 (td, J = 6.8, 5.5 Hz, 2 H; $CH_2NH-C(2)$), 3.84 (s, 3 H; OMe), 6.20–6.50 (br. s, 2 H; NH₂), 6.27 (t, J = 5.5 Hz, 1 H; NH), 7.20–7.34 (m, 5 H; C₆H₅), 7.93 ppm (s, 1 H; H–C(7)); 13 C NMR (75 MHz, CDCl₃): δ = 26.32 (CH₂-C(4)), 26.52 (2 C; C(3",5")), 26.90 (C(4')), 31.70 (2 C; C(2",6")), 35.47 (C(1'')), 38.33 $(CH_2-C(1'))$, 38.83 $(2 C; NMe_2)$, 44.46 $(CH_2NH-C(2))$, 49.33 (CH₂CH₂-C(4)), 51.63 (OMe), 57.04 (CH₂-C(1")), 104.42 (C(6)), 112.03 (C(4)), 113.42 (C(4)), 122.86 (C(7)), 126.66 (C(4')), 128.69 (2 C; C(2',6')), 128.80 (2 C; C(3',5')), 138.65 (C(1')), 146.92 (C(3a)), 148.06 (C(5)), 154.30 (C(2)), 169.11 ppm (C=O); IR (ATR): $\tilde{v} = 3406$ (w), 2922 (w), 1685 (w), 1576 (s), 1427 (m), 1365 (w), 1273 (m), 1204 (s), 1153 (s), 1104 (w), 964 (m), 793 (w), 715 cm⁻¹ (s); HR-MALDI-MS: m/z (%): 558.2931 (31), 557.2902 (100, $[M + H]^+$, calcd for C₂₈H₄₁N₆O₄S⁺: 557.2904), 449.2782 (52), 324.1574 (45).

Methyl 5-Amino-4-[2-(benzylamino)ethyl]-1-(*N*,*N*-dimethylsulfamoyl)-2-[(2-phenylethyl)amino]-1*H*-benzimidazole-6-carboxylate (16a):

According to GP 8, starting from 14c (68 mg, 0.15 mmol), benzaldehyde (16 mg, 0.15 mmol) in anhydrous CH₂Cl₂ (1.0 mL) over 4 Å molecular sieves (ca. 100 mg), then with and NaBH(OAc)₃ (90 mg, 0.43 mmol). Workup with 2 M aq. NH₃ solution (10 mL) and EtOAc (3x 10 mL), FC (SiO₂; CH₂Cl₂/MeOH/Et₃N 97:2:1), and lyophilization from tBuOH yielded 16a (48 mg, 59%) as a white solid $R_{\rm f} = 0.20$ (SiO₂; CH₂Cl₂/MeOH/Et₃N 97:2:1, UV 254 nm); m.p. 107–109 °C; ¹H NMR (300 MHz, CDCl₃): $\delta = 2.75$ (s, 6 H; NMe₂), 2.97–3.02 (m, 4 H; CH₂-C(4) and CH₂-C(1')), 3.10 (br. t, $J \approx 6.0$ Hz, 2 H; CH₂CH₂-C(4)), 3.79 (td, $J = 6.9, 5.6 \text{ Hz}, 2 \text{ H}; CH_2\text{NH-C}(2)), 3.76-3.82 \text{ (m, 2 H; CH}_2-C(1")), 3.85 \text{ (s, 3 H; })$ OMe), 6.28 (t, J = 5.6 Hz, 1 H; NH–C(2)), 7.21–7.35 (m, 10 H; 2x C₆H₅), 7.95 ppm (s, 1 H; H–C(7)); ¹³C NMR (75 MHz, CDCl₃): δ = 26.09 (CH₂–C(4)), 35.18 (CH₂-C(1')), 38.57 (2 C; NMe₂), 44.19 (CH₂NH-C(2)), 48.21 (CH₂CH₂-C(4)), 51.42 (OMe), 53.90 (CH₂-C(1")), 104.37 (C(6)), 112.02 (C(7)), 112.90 (C(4)), 122.85 (C(7a)), 126.57 and 126.84 (2 C; C(4',4")), 127.99, 128.32, 128.62, and 128.72 (8 C; C(2',3',5',6',2",3",5",6")), 138.59 and 140.28 (2 C; C(1',1''), 146.97 (C(3a)), 147.81 (C(5)), 154.29 (C(2)), 169.09 ppm (C=O); IR (ATR): $\tilde{\nu} = 3443$ (w), 3406 (w), 3338 (w), 3028 (w), 2951 (w), 1681 (w), 1583 (s), 1423 (m), 1373 (m), 1264 (m), 1205 (s), 1155 (s), 1072 (m), 959 (m), 793 (w), 738 (s), 696 cm⁻¹ (s); HR-MALDI-MS: *m/z* (%): 552.2461 (34), 551.2432 (100, $[M + H]^+$, calcd for C₂₈H₃₅N₆O₅S⁺: 551.2435), 444.2377 (100), 324.1574 (56).

Methyl 5-Amino-4-{2-[(cyclopentylmethyl)amino]ethyl}-1-(*N*,*N*-dimethylsulfamoyl)-2-[(2-phenylethyl)amino]-1*H*-benzimidazole-6-carboxylate (16b):

According to **GP 8**, starting from **14c** (62 mg, 0.14 mmol), cyclopentanecarbaldehyde (13 mg, 0.13 mmol) in anhydrous CH_2Cl_2 (1.0 mL) over 4 Å molecular sieves (ca. 100 mg), then with and NaBH(OAc)₃ (110 mg, 0.52 mmol). Workup with 2 M aq. NH₃ solution (10 mL) and EtOAc (3x 10 mL), FC (SiO₂; $CH_2Cl_2/MeOH/Et_3N$ 97:2:1), and lyophilization from *t*BuOH yielded **16b** (29 mg, 40%) as a colorless oil.

 $R_{\rm f} = 0.17$ (SiO₂; CH₂Cl₂/MeOH/Et₃N 97:2:1, UV 254 nm); ¹H NMR (300 MHz, CDCl₃): $\delta = 1.08 - 1.19$ (m, 2 H; H_a-C(2",5")), 1.46 - 1.62 (m, 4 H; H₂C(3",4")), 1.69–1.80 (m, 2 H; H_b –C(2",5")), 1.99 (sept., J = 7.3 Hz, 1 H; H–C(1")), 2.59 (d, J = 7.3 Hz, 2 H; CH₂-C(1")), 2.74 (s, 6 H; NMe₂), 2.92 (t, J = 6.2 Hz, 2 H; CH₂-C(4)), 2.98-3.07 (m, 4 H; CH₂CH₂-C(4) and CH₂-C(1')), 3.81 (td, J = 6.9, 5.5 Hz, 2 H; CH_2 NH-C(2)), 3.84 (s, 3 H; OMe), 6.27 (t, J = 5.5 Hz, 1 H; NH-C(2)), 6.30-6.55 (br. s, 2 H; NH₂), 7.19-7.34 (m, 5 H; C₆H₅), 7.93 ppm (s, 1 H; H–C(7)); ¹³C NMR (75 MHz, CDCl₃): δ = 25.38 (2 C; C(3",4")), 26.38 (CH₂-C(4)), 30.95 (2 C; C(2",5")), 35.29 (C(1")), 38.66 (2 C; NMe₂), 40.23 (CH₂-C(1')), 44.29 (CH₂NH-C(2)), 49.14 (CH₂CH₂-C(4)), 51.45 (OMe), 55.80 (CH₂-C(1")), 104.25 (C(6)), 111.86 (C(7)), 113.27 (C(4)), 122.69 (C(7a)), 126.48 (C(4')), 128.51 and 128.63 (4 C; C(2',3',5',6')), 138.49 (C(1')), 146.76 (C(3a)), 147.91 (C(5)), 154.12 (C(2)), 168.94 ppm (C=O); IR (ATR): $\tilde{\nu} = 3405$ (w), 2947 (w), 2864 (w), 1684 (w), 1574 (s), 1426 (m), 1365 (w), 1272 (m), 1203 (s), 1151 (s), 1107 (w), 962 (m), 792 (w), 714 cm⁻¹ (m); HR-MALDI-MS: m/z (%): 544.2781 (34), 543.2746 (100, $[M + H]^+$, calcd for $C_{27}H_{39}N_6O_4S^+$: 543.2754), 435.2627 (78), 324.1583 (75).

12 References

- T. Ritschel, P. C. Kohler, A. Heine, F. Diederich, G. Klebe, *ChemMedChem* 2009, 4, 2012–2023. How to Replace the Residual Solvation Shell of Polar Active Site Residues to Achieve Nanomolar Inhibition of tRNA-Guanine Transglycosylase.
- [2] L. J. Barandun, F. Immekus, P. C. Kohler, S. Tonazzi, B. Wagner, S. Wendelspiess, T. Ritschel, A. Heine, M. Kansy, G. Klebe, F. Diederich, *Chem. Eur. J.* 2012, *18*, 9246–9257. From *lin*-Benzoguanines to *lin*-Benzoyhpoxanthines as Ligands for *Z. mobilis* TGT: Replacement of Protein-Ligand Hydrogen Bonding by Import of Water Clusters.
- [3] S. R. Hörtner, T. Ritschel, B. Stengl, C. Kramer, W. B. Schweizer, B. Wagner, M. Kansy, G. Klebe, F. Diederich, *Angew. Chem. Int. Ed.* 2007, 46, 8266–8269; *Angew. Chem.* 2007, 119, 8414–8417. Potent Inhibitors of tRNA-Guanine Transglycosylase, an Enzyme Linked to the Pathogenicity of the *Shigella* Bacterium: Charge-Assisted Hydrogen Bonding.
- P. C. Kohler, T. Ritschel, W. B. Schweizer, G. Klebe, F. Diederich, *Chem. Eur. J.* 2009, 15, 10809–10817. High-Affinity Inhibitors of tRNA-Guanine Transgycosylase Replacing the Function of Structural Water Cluster.

-57 SI

Supporting Information

58 SI

Supporting Information 60 SI

65 SI

18	17	16	15	14	13	12	1	10	ω	ŝ	N	σι	СЛ	4	w		N	-	
Nucleus	Spectrometer Frequency	Modification Date	Acquisition Date	Acquisition Time	Pulse Width	Relaxation Delay	Receiver Gain	Number of Scans	Experiment	Pulse Sequence	Temperature	Solvent	Spectrometer	Owner	Origin		Comment	Title	Parameter
13C	100.61	2010-08-18T09:40:56	2010-08-18T08:45:00	1.3632	9.1000	2.0000	203	1500	ID	zgpg30	298.0	CDCI3	spect	locnmr	Bruker BioSpin GmbH	group dieder CAR CDCI3 / opt/ v dorlan 11	Sample PIE 16	11-17-08-dorlan	Value

		15 A	14 A	13 Pu	12 R	11 R	10 N Sc	9 0	8 P	7 16	SC 9	Ω Ω	40	ш О		20	1 1	
Spectrometer Frequency	Modification Date	Acquisition Date	Acquisition Time	Pulse Width	Relaxation Delay	Receiver Gain	Number of Scans	Experiment	Pulse Sequence	Temperature	Solvent	Spectrometer	Owner	Origin		Comment	Title	Parameter
 100.61	2010-08-18T09:41:08	2010-08-18T10:18:00	1.3632	9.1000	2.0000	203	1500	1D	zgpg30	298.0	CDCI3	spect	locnmr	Bruker BioSpin GmbH	group dieder CAR CDCI3 / opt/ v dorlan 12	Sample PIE_17	12-17-08-dorlan	Value

71 SI

Parameter	Value
1 Title	8-24-02-dkohle
2 Conment	Sample pk-690-690 group dieder CAR CDCI3 / opt/ v dkohle 8
3 Origin	Bruker BioSpin GmbH
Owner	locnmr
5 Spectrometer	spect
Solvent	CDC13
Temperature	300.0
8 Pulse Sequence	zgpg30
Experiment	D
10 Number of Scans	1024
11 Receiver Gain	203
12 Relaxation Delay	2.0000
13 Pulse Width	9.1000
14 Acquisition Time	1.3632
15 Acquisition Date	2009-02-24T14:03:00
16 Modification Date	2009-02-24T14:39:30
17 Spectrometer	100.61
Frequency	

17 9		161	15	14	131	12	11	101	φ -	00 	7		5	4	ω O	2		
Spectrometer Frequency		Modification Date	Acquisition Date	Acquisition Time	Pulse Width	Relaxation Delay	Receiver Gain	Number of Scans	Experiment	Pulse Sequence	Temperature	Solvent	Spectrometer	Owner	Origin	Comment	Title	Parameter
	100.61	2010-08-24T09:32:02	2010-08-23T21:03:00	1.3632	9.1000	2.0000	203	1500	1D	zgpg30	298.0	CDCI3	spect	locnmr	Bruker BioSpin GmbH	Sample PIE_19 group dieder CAR CDCI3 / opt/ v dortan 7	7-23-08-dorlan	Value

77 SI

NH2

0 Ó

10 Numb Scans 11 Receit 12 Relax: Delay 13 Pulse 13 Acquis 14 Acquis 15 Acquis 15 Acquis 15 Acquis 15 Acquis 17 Spect Frequ									9 Experiment	8 Pulse	7 Tem	5 Solvent	5 Spec	4 Owner	3 Origin		2 Com	1 Title	Pa
Number of Scans Receiver Gain Relaxation Delay Puise Width Acquisition Time Acquisition Date Acquisition Date Date Modification Date Frequency	ainters ber of siver Gain xation y y Width a Width a Width isistion Time iffication	ber of siver Gain xation xation y Width a Width a Width a Width	ber of Is Siver Gâin Siver Gâin Xation Y Y Y Y	ber of Is Biver Gain Biver Gain Sy Xation Y	ber of Is Siver Gain Xation Y	ber of Is Siver Gain	ber of		ariment	Pulse Sequence	Temperature	ent	Spectrometer	er	2		Comment		Parameter
1D 1500 203 2.0000 9.1000 1.3632 2010-09-08T21:32:00 2010-09-09T09:41:56 2010-09-09T09:41:56 100.61				1D 1500 203 2.0000 9.1000	1D 1500 203 2.0000	1D 1500 203	1D 1500	10		zgpg30	298.0	CDCI3	spect	locnmr	Bruker BioSpin GmbH	group dieder CAR CDCI3 / opt/ v dorlan 19	Sample PIE_24	19-08-09-dorlan	Value

Ó

	Parameter	Value
-	Title	10-15-09-dorlan
N	Origin	Bruker BioSpin GmbH
ω	Owner	locnmr
4	Spectrometer	spect
C/1	Solvent	CDCI3
σι	Temperature	298.0
N	Pulse Sequence	05 gpg 30
ŝ	Experiment	1D
ω	Number of Scans	1500
10	Receiver Gain	203
Ξ	Relaxation Delay	2.0000
12	12 Pulse Width	9.1000
13	Acquisition Time	1.3632
14	Acquisition Date	2010-09-15T18:50:00
15	5 Modification Date	2010-09-16T12:05:40
16	Spectrometer Frequency	100.61
17	17 Nucleus	13C

Supporting Information 88 SI

Parameter	ameters Válue
Title	9-15-09-dbaran
Origin	Bruker BioSpin GmbH
Owner	locimi
Solvent	CDCI3
Pulse Sequence	DGGB2
Acquisition Date	2010-09-15T17:15:00
Modification Date	2010-09-17T08:28:26
Temperature	298.0
Number of Scans	2000
Spectrometer	100.61
Speetral Width	24038.5
Lowest Frequency	-1958.9
Nucleus	13C
Acquired Size	32768
Spectral Size	65536

ſ

Supporting Information 90 SI

Ξ		16 S	15 M	14 A	13 A	12 P	11 R	10 R	ο Ζ	со П	7 P	ъ Т	un Vi	4 5	ω Ο	20	1	
Acquisition Date Modification Date Spectrometer Frequency	cquisition Date Iodification Date pectrometer	cquisition Date	cquisition Date		Acquisition Time	Pulse Width	Relaxation Delay	Receiver Gain	Number of Scans	Experiment	Pulse Sequence	Temperature	Solvent	Spectrometer	Owner	Origin	Title	Parameter
		100.61	2009-03-19T15:46:50	2009-03-19T14:58:00	1.3632	9.1000	2.0000	203	1024	ID	0E Đđồ z	300.0	CDCI3	spect	locnmr	Bruker BioSpin GmbH	58-19-03-dkohle	Value

0.0

)=o o

NH2

NH2

Spectral Size

65536

Supporting Information 96 SI

ó 1

0,0

=0 Ó

Par	Parameters
Parameter	Value
tle	11-22-09-dbaran
igin	Bruker BioSpin GmbH
wner	locnm
lvent	CDCI3
ilse Sequence	0ලි ශි z
equisition Date	2010-09-23T07:27:00
odification Date	2010-09-23T08:19:22
mperature	298.1
unber of Seans	5000
ectrometer	100.61
equency	
octral Width	24038.5
west Frequency	-1958,4
adeus	13C
aquired Size	32768
octral Size	65536

102 SI

- 1	Parameter	Value
н	Title	pk-710-710-c13
2	Comment	13C OBSERVE
w	Origin	Varian
4	Spectrometer	mercury
ы	Author	
σ	Solvent	CDCI3
7	Temperature	29.0
8	Pulse Sequence	s2pul
9	Experiment	1D
10	Number of Scans	128
1	Receiver Gain	36
12	Relaxation Delay	1.0000
μ	Pulse Width	0.0000
14	Acquisition Time	1.3000
5	Acquisition Date	2009-05-07T08:19:18
5	Modification Date	2009-05-07T08:43:24
17	Spectrometer Frequency	75.39
18	Spectral Width	20000.0
15	Lowest Frequency	-1724.8
20	Nucleus	13C
21	Acquired Size	26000
22	Spectral Size	65536

-20 ٦

Supporting Information 103 SI

104 SI

120 110 100 f1 (ppm)

В

ω N =	Parameter Title Comment Origin	Value pk-706707-c13 13C OBSERVE Varian
4 W	Spectrometer	mercury
ы	Author	
9	Solvent	CDCI3
7	Temperature	29.0
8	Pulse Sequence	s2pul
9	Experiment	1D
10	Number of Scans	484
Ξ	Receiver Gain	36
12	Relaxation Delay	1.0000
13	Pulse Width	0.0000
14	Acquisition Time	1.3000
5	Acquisition Date	2009-04-09T11:52:22
16	16 Modification Date	2009-04-09T12:49:24
17	17 Spectrometer Frequency	75.50
18	18 Spectral Width	20000.0
19	19 Lowest Frequency -1712.4	-1712.4
20	20 Nucleus	13C
21	21 Acquired Size	26000
22	22 Spectral Size	65536

