Acta Crystallographica Section D
 Biological Crystallography

High-Affinity Inhibitors of Zymomonas mobilis tRNA-Guanine Transglycosylase through Convergent Optimization

Supplementary Material

Luzi Jakob Barandun, ${ }^{[a]}$ Florian Immekus, ${ }^{[b]}$ Philipp C. Kohler, ${ }^{[a]}$ Tina Ritschel, ${ }^{[b]}$ Andreas Heine, ${ }^{[b]}$ Pierfrancesco Orlando, ${ }^{[a]}$ Gerhard Klebe, $*{ }^{[b]}$ and François Diederich ${ }^{[a]}$

[a] L. J. Barandun ${ }^{\dagger}$, Dr. P. C. Kohler ${ }^{\dagger}$, Dr. P. Orlando, Prof. Dr. F. Diederich Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg, HCI, CH-8093 Zurich (Switzerland)

Fax: (+41) 44-632-1109
E-mail: diederich@org.chem.ethz.ch
[b] F. Immekus ${ }^{\dagger}$, Dr. T. Ritschel, Dr. A. Heine, Prof. Dr. G. Klebe Institut für Pharmazeutische Chemie Philipps-Universität Marburg, Marbacher Weg 6
35032 Marburg (Germany)
Fax: (+49) 6421-282-8994
E-mail: klebe@mailer.uni-marburg.de

Current address of Dr. T. Ritschel:
Computational Discovery \& Design Group, CMBI
Radboud University Medical Centre
PO Box 91016500 HB Nijmegen
[\dagger] These authors contributed equally to this work.

Table of Contents

List of Abbreviations 3
1 Figure S1: Crystal Structure with 6a 6
2 Figure S2: Crystal Structure with 6b 7
3 Figure S3: Crystal Structure with 6c 8
4 Figure S4: Crystal Structure with 7a 9
5 Figure S5: Crystal Structure with 7b 10
6 Figure S6: Crystal Structure with 7c 11
7 Figure S7: Binding Mode of Mono-Functionalized lin-Benzo- hypoxanthines 12
8 Figure S8: Comparison Crystal Structures of $\mathbf{4 a}, \mathbf{b}$ with $\mathbf{6 a}, \mathbf{b}$ 13
9 Figure S9: Cocrystallization versus Soaking of Ligands 14
10 Figure S10: Comparison of the Binding Mode of $\mathbf{4 c}$ and $\mathbf{6 a}$ 15
11 Synthetic Details and Experimental Data 16
11.1 Synthesis of the lin-Benzopurines 16
11.2 Materials and Methods 17
11.3 General Procedures (GPs) 20
11.4 Compilation of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data 22
11.5 Experimental Data 29
12 References 54
13 NMR Spectra 55

List of Abbreviations

3-HPA	3-hydroxypicolinic acid
9-BBN	9-borabicyclo[3.3.1]nonane
Å	Ångström ($1 \AA=10^{-10} \mathrm{~m}$)
aq.	aqueous
Ar	argon
ax	axial
br.	broad
c	centi-
C	Celsius
calcd	calculated
conc.	concentrated
d	doublet
decomp	decomposition
DEPT	distortionless enhancement by polarization transfer
DIAD	N, N-diisopropyl azodicarboxylate
DIPA	N, N-diisopropylamine
DME	1,2-dimethoxyethane
DMF	N,N-dimethylformamide
$\mathrm{Me}_{2} \mathrm{SO}$	dimethylsulfoxide
eq	equivalent; equatorial
ESI	electron spray ionization
Et	ethyl
EtOAc	ethyl acetate
eV	electron volt
FC	flash column chromatography
FT	fourier transform
g	gram(s)
GP	general procedure
h	hour(s)
HPLC	high performance liquid chromatography
HR	high resolution
HSQC	heteronuclear single quantum coherence

Hz	Hertz
IR	infrared spectroscopy
J	coupling constant (NMR) in Hz
L	liter
LC/MS	liquid chromatography/mass spectrometry
Lit.	literature (value)
M	Mega
M	molar
m	mili-; medium; meter; multiplet
m.p.	melting point
m / z	mass over charge ratio
MALDI	matrix-assisted laser desorption/ionization
Me	methyl
MeCN	acetonitrile
mg	milligram(s)
min	minute(s)
MPLC	medium pressure liquid chromatography
MS	mass spectrometry
n	nano
n	normal
NMR	nuclear magnetic resonance
org.	organic
PDB	protein data bank
ppm	parts per million
q	quartet
R_{f}	retention factor
RP	reverse phase
s	singlet; strong
sat.	saturated
sh.	shoulder
t	triplet
tert	

THF	tetrahydrofuran
TLC	thin-layer chromatography
TMS	tetramethylsilane
tRNA	transfer ribonucleic acid
UV	ultraviolet
w	weak
Z. mobilis	Zymomonas mobilis
δ	chemical shift in ppm relative to TMS
\tilde{v}	wavenumber(s)
\circ	degree
$\mu \mathrm{m}$	micrometer(s)

The three-letter code for amino acids is used.

Supplementary Figure S1. Crystal Structure with 6a

Crystal structure of Z. mobilis TGT•6a (PDB code: $4 \mathrm{gi4}$), obtained by soaking. Color code: $\mathrm{C}_{\text {enzyme }}$ gray, $\mathrm{C}_{\text {ligand }}$ green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as dashed lines and distances are given in \AA. The substituent in the ribose- 33 pocket is not resolved.

Supplementary Figure S2. Crystal Structure with 6b

Crystal structure of Z. mobilis TGT•6b (PDB code: 4gkt), obtained by cocrystallization. Color code: $\mathrm{C}_{\text {enzyme }}$ gray, $\mathrm{C}_{\text {ligand }}$ green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as black dashed lines and the $\mathrm{C}_{\mathrm{Ph}}-\mathrm{H} \cdots \mathrm{O}_{\mathrm{W} 2}$ interaction as green dashed line. Distances are given in \AA.

Supplementary Figure S3. Crystal Structure with 6c

Supplementary Figure S4: Crystal Structure with 7a

Supplementaary Figure S5. Crystal Structure with 7b

Crystal structure of Z. mobilis TGT•7b (PDB code: 4gh1), obtained by cocrystallization. The substituent in the ribose-33 pocket (morpholino) is not resolved. Color code: $\mathrm{C}_{\text {enzyme }}$ gray, $\mathrm{C}_{\text {ligand }}$ green, O red, N blue. Selected water molecules are shown as spheres. H-bonds are shown as dashed lines and distances are given in \AA.

Supplementary Figure 6. Crystal Structure with 7c

Supplementary Figure S7. Binding Mode of Mono-Functionalized lin-

Benzohypoxanthines

Binding mode of mono-functionalized lin-benzohypoxanthines. Crystal structure of Z. mobilis TGT with a) 2a (PDB code: $3 \mathrm{~s} 1 \mathrm{~g}^{[2]}$) and b) 5a (PDB code: $3 \mathrm{sm} 0^{[2]}$), both obtained by cocrystallization. Color code: $\mathrm{C}_{\text {ligand }}$ green, $\mathrm{C}_{\text {enzyme }}$ gray, O red, N blue. The pocket is indicated as gray surface. Selected water molecules are shown as red spheres, H -bonds as dashed lines.

Supplementary Figure 8. Comparison Crystal Structures of 4a,b with 6a,b

Comparison of the crystal structures of the bifunctionalized lin-benzoguanines $\mathbf{6 a , b}$ (C green) with their mono-functionalized analogues $\mathbf{4 a , b}$ (C cyan). a) $\mathbf{4 a}$ (PDB code: $3 \mathrm{ge} 7^{[1]}$; soaking) and $\mathbf{6 b}$ (PDB code: 4 gkt ; cocrystallization). b) $\mathbf{4 b}$ (PDB code: $3 \mathrm{gc} 4^{[1]}$; soaking) and $\mathbf{6 a}$ (PDB code: 4gi4; soaking). H-bonds shown as dashed lines, O red, N blue.

Supplementary Figure S9. Cocrystallization versus Soaking of Ligands

Comparison of available space in the ribose- 33 pocket for the ligand in a) the soaked crystal structure ($6 \mathbf{a}$, PDB code: $4 \mathrm{gi4}$) and b) the cocrystallized structure ($\mathbf{6 b}$, PDB code: 4 gkt). Color code: $\mathrm{C}_{\text {ligand }}$ green, $\mathrm{C}_{\text {enzyme }}$ gray, O red, N blue. The pocket is indicated as gray surface. Selected water molecules (W1-W4) are shown as spacefilling, red spheres.

Supplementary Figure S10. Comparison of the Binding Mode of 4c and 6a

Comparison of the X-ray crystal structures of Z. mobilis TGT with $\mathbf{4 c}$ (C cyan; PDB code: $3 \mathrm{gc} 4^{[1]}$) and $\mathbf{6 a}$ (C green; PDB code: $4 \mathrm{gi4}$), both obtained by soaking. The phenyl substituent of $\mathbf{6 a}$ is shifted by about $1 \AA$ deeper into the ribose- 34 pocket. Color code: O red, N blue. The active site is indicated as gray surface. Hydrogen bonds are shown as black dashed lines.

11 Synthetic Details and Experimental Data

11.1 Synthesis of the lin-Benzopurines

The 5-aminobenzimidazoles 8a-c were prepared according to previously described procedures (Scheme S1). ${ }^{[3,4]}$ Iodination at $\mathrm{C}(4)$ furnished $\mathbf{9 a - c}$, which were used for Suzuki cross-coupling reaction with borolane 10. The obtained 4vinylbenzimidazoles 11a-c were transformed to the corresponding alcohols 12a-c by hydroboration with $9-\mathrm{BBN}$, followed by oxidative workup. Subsequent Mitsunobu reaction furnished phthalimides 13a-c, which were cleaved with hydrazine to give the amines $\mathbf{1 4 a - c}$.

Supplementary Scheme S1.

Synthesis of lin-benzohypoxanthines $7 \mathbf{7 a - c .}$ a) $\mathrm{I}_{2}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}$, $1-3$ d; 9a: $70 \%, \mathbf{9 b}: 37 \%, 9 \mathbf{c}: 84 \%$. b) $\mathbf{1 0}, \mathrm{Et}_{3} \mathrm{~N},\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right], \mathrm{DME} / \mathrm{H}_{2} \mathrm{O}, 85^{\circ} \mathrm{C}$, 3 h ; 11a: 69%, 11b: 71%, 11c: 77%. c) i) $9-\mathrm{BBN}$, THF, $25^{\circ} \mathrm{C}$, 3 h ; ii) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$, $\mathrm{H}_{2} \mathrm{O}, 0$ to $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$; 12a: 55%, 12b: 46%, 12c: 53%. d) PPh_{3}, DIAD, phthalimide, THF, 0 to $25^{\circ} \mathrm{C}, 40 \mathrm{~min}$; 13a: 69%, 13b: 71%, 13c: 77%. e) $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{MeOH} / \mathrm{THF}, 5{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 14a: 99%, 14b: 93%, 14c: 82%. f) Cyclohexanecarbaldehyde, $\mathrm{NaBH}(\mathrm{OAc})_{3}, 0$ to $25^{\circ} \mathrm{C}, 13-19 \mathrm{~h}$; 15a: $52 \%, \mathbf{1 5 b}$: $46 \%, \mathbf{1 5 c}: 72 \%$. g) i) Formamide, $140^{\circ} \mathrm{C}, 18-22 \mathrm{~h}$; ii) aq. $\mathrm{HCl}, \mathrm{MeOH}, 65^{\circ} \mathrm{C}, 18-24 \mathrm{~h} ; \mathbf{7 a}: 28 \%, 7 b$: $20 \%, 7 \mathbf{c}: 19 \% . \quad 9-\mathrm{BBN}=9$-borabicyclo[3.3.1]nonane, $\mathrm{DIAD}=N, N$-diisopropyl azodicarboxylate, $\mathrm{DME}=1,2$-dimethoxyethane, $\mathrm{THF}=$ tetrahydrofuran.

Reductive amination of the amines using either cylcohexyl-, cyclopentyl-, or benzaldehyde furnished the benzimidazoles $\mathbf{1 5 a - c}$ and 16a,b (Schemes S1 and S2).

The lin-benzohypoxanthines $7 \mathbf{a}-\mathbf{c}$ were accessible by cyclization using formamide followed by acidic deprotection. The lin-benzoguanines 6a-c were directly obtained as trihydrochloride salts by cyclization with chloroformamidinium chloride.

Supplementary Scheme S2.

Synthesis of lin-benzoguanines 6a-c. a) Benzaldehyde, cyclopentanecarbaldehyde, or cyclohexanecarbaldehyde, $\mathrm{NaBH}(\mathrm{OAc})_{3}, 0$ to $25^{\circ} \mathrm{C}, 13-19 \mathrm{~h}$; 15c: $72 \%, \mathbf{1 6 a}: 45 \%$, 16b: 40%. b) Chloroformamidinium chloride, $\mathrm{Me}_{2} \mathrm{SO}_{2}, 130^{\circ} \mathrm{C}, 1-2 \mathrm{~h} ; \mathbf{6 a} \cdot 3 \mathrm{HCl}$: 59%, 6b $\cdot 3 \mathrm{HCl}: 53 \%, \mathbf{6 c} \cdot 3 \mathrm{HCl}: 48 \%$.

11.2 Materials and Methods

Commercial reagents (ABCR, Aldrich, AlfaAesar, Acros, Fluka, and TCI Deutschland) were purchased as reagent-grade and used without further purification.

Solvents for extraction or column chromatography were of technical quality and were distilled before use.

Anhydrous solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, DMF, and THF) for reactions were purified by a solvent drying system from LC Technology Solutions Inc. SP-105 under nitrogen atmosphere $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content $<10 \mathrm{ppm}$ as determined by Karl-Fischer titration). Formamide was dried by storing over $4 \AA$ molecular sieves.

Evaporation was performed at $\leq 40^{\circ} \mathrm{C}$ and ~ 10 mbar. Further drying of the compounds was carried out at $\sim 10^{-2} \mathrm{mbar}$.

All reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise stated. Reactions mixtures were stirred with a
magnetic stirring bar and monitored by liquid chromatography/mass spectrometry (LC/MS) or by thin-layer chromatography (TLC).

TLC was carried out on SiO_{2}-layered glass plates ($60 \mathrm{~F}_{254}$, Merck). Visualization was achieved using UV light with a wavelength of 254 nm .

LC/MS was performed on an Ultimate 3000 series LC instrument combined with an MSQ Plus mass spectrometer from Dionex, using a Zorbax Eclipse Plus C18 column ($30 \times 3 \mathrm{~mm} ; 3.5 \mu \mathrm{~m}$ pore size) from Agilent.

Flash column chromatography (FC) was performed using $\mathrm{SiO}_{2}-60$ (230-400 mesh ASTM, $0.040-0.063 \mathrm{~mm}$ from Fluka) or MCI gel (CHP20P, styrene-divinylbenzene, $75-150 \mu \mathrm{~m}$, from Supelco) at $25^{\circ} \mathrm{C}$ with a head pressure of $0.0-0.4$ bar. The solvent compositions are reported individually.

Medium pressure liquid chromatography (MPLC) was conducted on a Büchi MPLC System with pump module C-601 \& C-605 and fraction collector C-660 with a gradient using the solvent mixtures indicated individually.

High performance liquid chromatography (HPLC) was carried out using a Merck Hitachi L-7100 pump (for analytic HPLC) or a Merck Hitachi L-7150 pump (for preparative HPLC), equipped with a Merck Hitachi D-7000 interface and a Merck Hitachi L-7614 degasser. For detection, a Merck Hitachi L-7400 UV detector (254 nm) was used. The analytical samples were injected using a Merck Hitachi L-7200 auto sampler. The column used was Phenomenex, $50 \times 21.1 \mathrm{~mm}$, Gemini $5 \mu \mathrm{~m}, \mathrm{C} 18,110$ A, AXIA, with a flow rate of $12 \mathrm{~mL} / \mathrm{min}$.

Melting points (m.p.) were determined on a B-540 apparatus from Büchi in open capillaries and are not corrected.

Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on a Varian Gemini 300, a Varian Mercury 300, a Bruker AV 400, a Bruker DRX 400, a Bruker DRX 500, or a Bruker DRX 600 spectrometer. All spectra were measured at $25^{\circ} \mathrm{C}$. The residual solvent peak was used as the internal reference $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=\right.$ $\left.77.16 \mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta_{\mathrm{H}}=2.50 \mathrm{ppm}, \delta_{\mathrm{C}}=39.52 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{H}}=3.31 \mathrm{ppm}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift δ in ppm relative to TMS ($\delta=0 \mathrm{ppm}$) (multiplicity, coupling constant J in Hz , number of protons; suggested assignment). The resonance multiplicity is described as s (singlet), d (doublet), t (triplet), q (quartet), sept. (septet) combinations thereof, or m (multiplet). Broad signals are described with br. (broad). The ${ }^{13} \mathrm{C}$ NMR spectra
are reported as follows: chemical shift δ in ppm relative to TMS ($\delta=0 \mathrm{ppm}$) (number of nuclei if greater than 1 ; suggested assignment if possible).

Infrared (IR) spectra were recorded on an ATR-unit-upgraded (Golden Gate) Perkin-Elmer FT-IR Spectrum 1600 spectrometer. The spectra were measured between $4000-600 \mathrm{~cm}^{-1}$. Selected absorption bands are reported in wave numbers $\left(\mathrm{cm}^{-1}\right)$ with relative intensities described as s (strong), m (medium), or w (weak).

High resolution mass spectrometry (HR-MS) was performed by the MS service of the Laboratorium für Organische Chemie der ETH Zürich. High resolution electrospray ionization (ESI) spectra were measured on a Bruker maXis spectrometer. High-resolution matrix-assisted laser desorption/ionization (MALDI) spectra were measured on an Ionspec (Varian) Ultima FT-ICR or a Solarix (Bruker) FT-ICR mass spectrometer using 3-hydroxypicolinic acid (3HPA) as a matrix.

Elemental analyses were measured by the Mikroanalytisches Laboratorium für Organische Chemie der ETH Zürich.

Nomenclature follows the suggestions proposed by the computer program ACD Name from ACD/Labs. Numbering of the atoms in the figures was defined arbitrarily to allow an unambiguous assignment of the NMR peaks.

11.3 General Procedures (GPs)

GP 1 for the Cyclization to the lin-Benzoguanines:
A suspension of the benzimidazole (1 eq), chloroformamidinium chloride (2 eq), and $\mathrm{Me}_{2} \mathrm{SO}_{2}$ was stirred at $130^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$. The mixture was diluted with sat. aq. NaHCO_{3} solution and the precipitate collected by centrifugation. FC (MCI gel; $\mathrm{H}_{2} \mathrm{O}+0.1 \mathrm{vol}-\%$ conc. $\left.\mathrm{HCl} / \mathrm{MeOH}\right)$ and evaporation gave the lin-benzoguanines.

GP 2 for the Cyclization to the lin-Benzohypoxanthines:

A solution of the benzimidazole (1 eq) in anhydrous formamide was heated at $140^{\circ} \mathrm{C}$ for $18-22 \mathrm{~h}$ under Ar and evaporated by bulb-to-bulb distillation (0.5 mbar , $140{ }^{\circ} \mathrm{C}$). A solution of the residue in aq. conc. $\mathrm{HCl} / \mathrm{MeOH}$ 1:2 (6.0 mL) was stirred at $65^{\circ} \mathrm{C}$ for $18-24 \mathrm{~h}$, neutralized ($\mathrm{pH} 6-7$) with aq. sat. NaHCO_{3} solution, and evaporated. HPLC ([Phenomenex, 50x21.1 mm, Gemini $5 \mu \mathrm{~m}, \mathrm{C} 18,110 \mathrm{~A}$, AXIA]; flow rate $12 \mathrm{~mL} / \mathrm{min}, \mathrm{H}_{2} \mathrm{O}+0.1$ vol- $\% \mathrm{HCOOH} / \mathrm{MeCN} 100: 0$ for 10 min , 100:0 to $80: 20$ within 40 min), evaporation, and lyophilization gave the linbenzohypoxanthines.

GP 3 for the Iodination of 5-Aminobenzimidazoles:

A solution of the aminobenzimidazole (1 eq) and iodine (1.2 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ sat. aq. NaHCO_{3} solution 2:1 was vigorously stirred at $25^{\circ} \mathrm{C}$ for $1-3 \mathrm{~d}$, diluted with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified chromatographically.

GP 4 for the Suzuki Cross-Coupling Reaction:

A suspension of the aryl iodide (1 eq), vinylboronic acid pinacol ester (10; 1.6 eq), and $\mathrm{Et}_{3} \mathrm{~N}$ (3 eq) in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}$ 5:1 was degassed in an ultra sonicator with Ar and treated with $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (0.05 eq). The mixture was stirred at $85^{\circ} \mathrm{C}$ for 3 h , diluted with aq. sat. NaHCO_{3} solution, and extracted with EtOAc (3x). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified chromatographically.

GP 5 for the Hydroboration:

The neat olefin (1 eq) was treated with a 0.5 m solution of $9-\mathrm{BBN}$ in THF (3 eq) under Ar. After stirring at $25^{\circ} \mathrm{C}$ for $3 \mathrm{~h}, 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{eq})$ and 1 m aq . NaOH solution (10 eq) were added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred vigorously at $25^{\circ} \mathrm{C}$ for 4 h , diluted with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with EtOAc (3 x 50 mL). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The residue was purified chromatographically.

GP 6 for the Mitsunobu Reaction with Phthalimide:

A solution of $\mathrm{PPh}_{3}(2 \mathrm{eq})$ in anhydrous THF was treated with DIAD (1 eq) at $0^{\circ} \mathrm{C}$ and stirred for 10 min until a pale yellow precipitate was formed. A solution of the alcohol (1 eq) and phthalimide (2 eq) in anhydrous THF was added. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min and evaporated. The residue was purified chromatographically.

GP 7 for the Cleavage of Phthalimide:

A solution of the phthalimide (1 eq) and hydrazine monohydrate (10 eq) in $\mathrm{MeOH} / \mathrm{THF} 95: 5$ was stirred at $50^{\circ} \mathrm{C}$ for 2 h . After evaporation, the mixture was taken up in 1 m aq. NaOH solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 50 mL). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to yield the amine.

GP 8 for the Reductive Amination:

A solution of the amine (1 eq) and the aldehyde (1 eq) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over $4 \AA$ molecular sieves was stirred at $25^{\circ} \mathrm{C}$ for 1 h under Ar , cooled to $0^{\circ} \mathrm{C}$, and treated with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (4 eq). The mixture was stirred at $25^{\circ} \mathrm{C}$ for $13-19 \mathrm{~h}$, diluted with 2 m aq. NH_{3} solution, and extracted with EtOAc (3x). The combined org. layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. After purification by MPLC, the residue was dissolved in $t \mathrm{BuOH}$ and lyophilized to give the amine.

11.4 Compilation of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data

Table S1. Selected ${ }^{1} \mathrm{H}$ NMR data $(400 \mathrm{MHz})$ of $\mathbf{6 a - c}$. The atom numbering for some compounds differs from the numbering in the experimental part.

Table S2. Selected ${ }^{1} \mathrm{H}(600 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(150 \mathrm{MHz}) \mathrm{NMR}$ data of $\mathbf{7 a}-\mathbf{c}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$. The atom numbering for some compounds differs from the numbering in the experimental part.

$\mathrm{R}=$			7c
$\mathrm{H}_{\text {ax }}-\mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)$	0.97 (qd, $J=12.6,2.9 \mathrm{~Hz})$	0.95 (qd, $J=11.9,3.0 \mathrm{~Hz})$	$0.91(\mathrm{qd}, J=11.9,2.1 \mathrm{~Hz})$
$\mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime \prime}\right)$	1.13 (tt, $J=12.3,2.8 \mathrm{~Hz})$	1.13 (tt, $J=12.3,3.1 \mathrm{~Hz})$	1.10 (tt, $J=12.0,3.0 \mathrm{~Hz})$
$\mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}, 5{ }^{\prime \prime}\right)$	1.20 (qt, $J=12.6,3.3 \mathrm{~Hz}$)	1.19 (tt, $J=12.3,3.1 \mathrm{~Hz})$	1.16 (br. tt, $J \approx 12.0,3.0 \mathrm{~Hz}$)
$\mathrm{H}-\mathrm{C}\left(1{ }^{\prime \prime}\right)$	$1.65-1.73$ (m)	$1.59-1.83$ (m)	1.18-1.23 (m)
$\mathrm{H}_{\text {eq }}-\mathrm{C}\left(2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}\right.$,	$1.57-1.86$ (m)	1.59-1.82 (m)	1.16 (br. d, $J \approx 12.6 \mathrm{~Hz}$)
E 5",6")			1.58-1.66 (m)
$\stackrel{\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)}{ }$	2.87 (t, $J=6.2 \mathrm{~Hz})$	2.87 (d, $J=7.0 \mathrm{~Hz})$	2.79 (d, $J=7.2 \mathrm{~Hz}$)
[5] $\mathrm{CH}_{2}-\mathrm{C}(4)$	3.21 (br. t, $J \approx 6.6 \mathrm{~Hz}$)	2.73-2.78 (m)	2.93 (t, J=7.2 Hz)
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$	--	3.23 (t, $J=7.3 \mathrm{~Hz}$)	3.16 (t, $J=7.5 \mathrm{~Hz})$
$\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	3.73 (br. t, $J \approx 6.6 \mathrm{~Hz}$)	3.58 (t, $J=7.5 \mathrm{~Hz}$)	$3.52(\mathrm{t}, J=7.2 \mathrm{~Hz})$
$\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$	5.08-5.19 (m)	3.58 (t, $J=7.5 \mathrm{~Hz}$)	$3.61(\mathrm{t}, J=7.2 \mathrm{~Hz})$
H-C(9)	7.95 (s)	7.76 (s)	7.71 (s)
$\mathrm{H}-\mathrm{C}(6)$	8.13 (s)	8.15 (s)	7.95 (s)
$\mathrm{CH}_{2}-\mathrm{C}(4)$	22.71	22.13	22.75
C(3",5")	25.00	24.92	24.96
C(4")	25.57	25.49	25.56
C(2",6")	30.02	29.92	29.99
$\mathrm{C}\left(1{ }^{\prime \prime}\right)$	34.43	34.27	34.72
$\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$	41.46	46.95	43.63
$\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	46.94	52.78	52.71
\# $\mathrm{CH}_{2}-\mathrm{C}\left(1{ }^{\prime \prime}\right)$	52.71	52.24	47.27
를 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$	--	56.96	35.27
$\overbrace{\sim}^{C}(8 \mathrm{a})$	105.77	103.67	103.86
${ }_{\circ} \mathrm{C}(9)$	116.91	115.30	115.26
C(4)	118.65	116.53	116.07
C(3a)	129.53	141.29	136.71
C(9a)	134.60	141.39	141.07
C(4a)	143.21	146.19	145.65
C(6)	143.70	158.04	158.49
C(2)	151.85	161.21	161.30
$\mathrm{C}(8)$	160.74	162.90	165.18

Table S3. Selected ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz}) \mathrm{NMR}$ data of $\mathbf{9 a}-\mathbf{c}$ in CDCl_{3}.

	9a	9b	9c
$\mathrm{R}=$	(1)		
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	2.67 (t, $J=5.9 \mathrm{~Hz})$	3.04 (t, $J=6.8 \mathrm{~Hz})$
NMe_{2}	2.89 (s)	2.93 (s)	2.73 (s)
E OMe	3.90 (s)	3.89 (s)	3.86 (s)
$\stackrel{\sim}{\sim} \mathrm{CH}_{2} \mathrm{NH}$	4.99 (d, $J=5.1 \mathrm{~Hz})$	3.70-3.75 (m)	3.89 (td, $J=6.8,5.4 \mathrm{~Hz})$
${ }_{5} \mathrm{~F}^{\mathrm{N}} \mathrm{NH}_{2}$	6.46 (br. s)	6.44 (br. s)	6.42 (br. s)
NH	6.69 (t, $J=5.6 \mathrm{~Hz})$	7.07 (t, $J=4.4 \mathrm{~Hz})$	6.37 (t, $J=5.4 \mathrm{~Hz})$
$\mathrm{H}-\mathrm{C}(7)$	8.08 (s)	8.06 (s)	8.01 (s)
NMe_{2}	38.79	38.80	38.76
$\mathrm{CH}_{2} \mathrm{NH}$	42.01	34.41	44.52
OMe	51.85	51.80	51.92
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	56.51	35.29
\# $\mathrm{C}(4)$	73.44	73.03	73.37
2 C(6)	104.35	104.01	104.21
${ }_{5} \mathrm{C}(7)$	114.35	114.12	114.27
${ }^{\circ} \mathrm{C}(7 \mathrm{a})$	121.77	121.82	121.82
C(3a)	148.65	148.58	148.76
C(5)	149.75	150.04	150.17
C(2)	154.19	154.86	154.78
$\mathrm{C}=\mathrm{O}$	168.05	168.10	168.22

Table S4. Selected ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz) data of $\mathbf{1 1 a - c}$ in CDCl_{3}

	11a	11b	11c
$\mathrm{R}=$			
NMe_{2}	2.89 (s)	2.93 (s)	2.74 (s)
OMe	3.89 (s)	3.88 (s)	3.85 (s)
$\mathrm{CH}_{2} \mathrm{NH}$	4.95 (d, $J=5.4 \mathrm{~Hz})$	3.68 (q, $J=5.5 \mathrm{~Hz})$	3.84 (td, $J=7.0,5.4 \mathrm{~Hz})$
$\mathrm{CH}=\mathrm{CH}_{\mathrm{E}}$	$\begin{aligned} & 5.72(\mathrm{dd}, J=11.8, \\ & 2.0 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 5.68(\mathrm{dd}, J=11.8, \\ & 2.1 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 5.69(\mathrm{dd}, J=11.8, \\ & 2.1 \mathrm{~Hz}) \end{aligned}$
鉴 NH_{2}	6.16 (br. s)	6.16 (br. s)	6.13 (br. s)
${ }_{\infty}^{\infty} \mathrm{CH}=\mathrm{CH}_{\mathrm{z}}$	$\begin{aligned} & 6.30(\mathrm{dd}, J=17.8, \\ & 2.0 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.20(\mathrm{dd}, J=17.9, \\ & 2.1 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.25(\mathrm{dd}, J=17.8, \\ & 2.1 \mathrm{~Hz}) \end{aligned}$
NH	6.67 (t, $J=5.8 \mathrm{~Hz})$	6.99 (t, $J=4.8 \mathrm{~Hz})$	$6.34(\mathrm{t}, J=5.4 \mathrm{~Hz})$
$\mathrm{CH}=\mathrm{CH}_{2}$	$\begin{aligned} & 6.93(\mathrm{dd}, J=17.8, \\ & 11.8 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.92(\mathrm{dd}, J=17.9, \\ & 11.8 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 6.92(\mathrm{dd}, J=17.8, \\ & 11.8 \mathrm{~Hz}) \end{aligned}$
$\mathrm{H}-\mathrm{C}(7)$	8.05 (s)	8.04 (s)	7.99 (s)
NMe_{2}	38.79	38.81	38.78
$\mathrm{CH}_{2} \mathrm{NH}$	41.93	39.41	44.49
OMe	51.61	51.58	51.68
C(6)	104.70	104.31	104.55
C(4)	111.37	110.99	111.24
\# C(7)	113.46	113.27	113.43
	119.72	119.41	119.57
$\bigcirc \mathrm{C}(7 \mathrm{a})$	123.40	123.42	123.45
$\mathrm{CH}=\mathrm{CH}_{2}$	128.42	128.68	126.82
C(3a)	145.77	146.18	146.31
C(5)	146.79	146.76	146.94
C(2)	154.39	155.01	154.98
$\mathrm{C}=\mathrm{O}$	168.96	169.03	169.14

Table S5. Selected ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz}) \mathrm{NMR}$ data of $\mathbf{1 2 a}-\mathbf{c}$ in CDCl_{3}.

	12a	12b	12c
$\mathrm{R}=$			
OH	1.60-1.86 (br. s)	1.48-1.78 (br. s)	1.52-1.73 (br. s)
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	2.67 (t, $J=5.9 \mathrm{~Hz})$	2.97-3.03 (m)
NMe_{2}	2.89 (s)	2.96 (s)	2.75 (s)
g $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	3.04 (t, $J=5.6 \mathrm{~Hz})$	$2.99(\mathrm{t}, J=5.6 \mathrm{~Hz})$	2.97-3.03 (m)
20Me	3.88 (s)	3.89 (s)	3.85 (s)
${ }_{ \pm} \mathrm{CH}_{2} \mathrm{OH}$	4.04 (t, $J=5.6 \mathrm{~Hz})$	$4.02(\mathrm{t}, J=5.6 \mathrm{~Hz})$	4.03 (t, $J=5.5 \mathrm{~Hz})$
${ }^{5} \mathrm{CH}_{2} \mathrm{NH}$	4.89 (d, $J=5.5 \mathrm{~Hz})$	$3.61(\mathrm{q}, J=5.5 \mathrm{~Hz})$	3.78 (td, $J=6.9,5.5 \mathrm{~Hz})$
NH_{2}	5.97 (br. s)	_- ${ }^{\text {a] }}$	5.94 (br. s)
NH	6.73 (t, $J=5.7 \mathrm{~Hz})$	7.03 (t, $J=4.8 \mathrm{~Hz})$	6.37 (t, $J=5.5 \mathrm{~Hz})$
$\mathrm{H}-\mathrm{C}(7)$	8.03 (s)	8.03 (s)	7.97 (s)
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	29.47	29.53	29.82
NMe_{2}	38.77	38.79	35.32
$\mathrm{CH}_{2} \mathrm{NH}$	41.98	39.44	44.56
OMe	51.62	51.61	51.79
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	56.26	38.84
$\Xi \mathrm{CH}_{2} \mathrm{OH}$	61.80	61.71	61.84
률(6)	105.16	104.90	104.94
${ }_{5} \mathrm{C}(4)$	112.22	111.95	112.09
${ }^{\circ} \mathrm{C}(7)$	112.55	112.39	112.41
C(7a)	123.04	123.09	122.93
C(3a)	145.84	145.90	145.83
C(5)	147.55	147.36	147.39
C(2)	153.93	154.40	154.21
$\mathrm{C}=\mathrm{O}$	169.00	169.05	168.97

[a] Signal not observed

Table S6. Selected ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz}) \mathrm{NMR}$ data of $\mathbf{1 3 a}-\mathbf{c}$ in CDCl_{3}. The atom numbering for some compounds differs from the numbering in the experimental part.

$\mathrm{R}=$	$\overbrace{s}^{13 a}>$		$\stackrel{13 c}{\square}$
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	2.60 (t, $J=5.7 \mathrm{~Hz})$	3.22 (t, $J=6.8 \mathrm{~Hz})$
NMe_{2}	2.84 (s)	2.87 (s)	2.71 (s)
$\mathrm{CH}_{2}-\mathrm{C}(4)$	3.26 (t, $J \approx 7.6 \mathrm{~Hz})$	3.17 (t, $J=7.7 \mathrm{~Hz})$	2.97 (t, $J=6.9 \mathrm{~Hz})$
En OMe	3.88 (s)	3.85 (s)	3.85 (s)
$\stackrel{\text { CH2 }}{ }{ }^{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	3.98 (t, $J \approx 7.6 \mathrm{~Hz})$	$3.92(\mathrm{t}, J=7.7 \mathrm{~Hz})$	3.96 (t, $J=6.8 \mathrm{~Hz})$
) ${ }_{5} \mathrm{CH}_{2} \mathrm{NH}$	4.81 (d, $J=5.6 \mathrm{~Hz})$	$3.54(\mathrm{q}, J=5.4 \mathrm{~Hz})$	3.70 (td, $J=6.9,5.6 \mathrm{~Hz})$
NH_{2}	6.29 (br. s)	6.25 (br. s)	6.24 (br. s)
NH	$6.52(\mathrm{t}, J=5.7 \mathrm{~Hz})$	$6.79(\mathrm{t}, J=4.9 \mathrm{~Hz})$	6.21 (br. t, $J \approx 5.6 \mathrm{~Hz}$)
$\mathrm{H}-\mathrm{C}(7)$	8.02 (s)	7.98 (s)	7.80 (s)
CH_{2} - $\mathrm{C}(4)$	24.27	24.38	24.40
$\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	35.84	35.91	35.95
NMe_{2}	38.79	38.95	38.77
$\mathrm{CH}_{2} \mathrm{NH}$	41.79	39.41	44.33
OMe	51.51	51.62	51.57
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	56.79	35.43
C (6)	104.50	104.29	104.35
\# $\mathrm{C}(4)$	109.76	109.47	109.68
를 $\mathrm{C}(7)$	112.98	112.94	112.92
$\overbrace{0} \mathrm{C}(7 \mathrm{a})$	122.82	123.01	122.86
${ }^{\circ} \mathrm{C}\left(3^{\prime \prime}, 6{ }^{\prime \prime}\right)$	123.16	123.29	123.25
$\mathrm{C}\left(1{ }^{\prime \prime 2} 2{ }^{\text {c }}\right.$)	132.30	132.46	132.45
C(4",5")	133.87	133.97	133.91
C(3a)	147.02	147.55	147.53
C (5)	147.42	147.55	147.55
C(2)	154.16	154.95	154.76
$2 \mathrm{C}=\mathrm{O}$	168.43	168.56	168.50
$\mathrm{C}=\mathrm{O}$	169.04	169.24	169.19

Table S7. Selected ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(100 \mathrm{MHz})$ NMR data of $\mathbf{1 4 a}-\mathbf{c}$ in CDCl_{3}.

	14a	14b	14c
$\mathrm{R}=$	(1) ${ }_{\text {s }}$	$\left\langle{ }_{-N}\right\rangle$	"
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	2.63 (t, $J=6.0 \mathrm{~Hz})$	2.96-3.01 (m)
NMe_{2}	2.88 (s)	2.92 (s)	2.72 (s)
En $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	3.04-3.10 (m)	2.97-3.07 (m)	2.96-3.01 (m)
$\stackrel{\mathrm{OMe}}{ }$	3.88 (s)	3.85 (s)	3.82 (s)
${ }_{5}^{5} \mathrm{CH}_{2} \mathrm{NH}$	4.92 (d, $J=5.5 \mathrm{~Hz})$	3.62 (q, $J=5.6 \mathrm{~Hz})$	$3.80(\mathrm{td}, J=6.8,5.5 \mathrm{~Hz})$
NH	$6.64(\mathrm{t}, J=5.8 \mathrm{~Hz})$	6.88 (t, $J=4.6 \mathrm{~Hz})$	$6.28(\mathrm{t}, J=5.5 \mathrm{~Hz})$
$\mathrm{H}-\mathrm{C}(7)$	8.01 (s)	7.97 (s)	7.93 (s)
$\mathrm{CH}_{2}-\mathrm{C}(4)$	29.51	29.39	29.45
NMe_{2}	38.76	38.79	38.62
$\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	41.06	40.98	41.05
$\mathrm{CH}_{2} \mathrm{NH}$	41.88	39.43	44.24
OMe	51.54	51.51	51.50
\# $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$	--	56.60	35.23
를 C(6)	104.85	104.49	104.42
${ }_{\sim}^{\circ} \mathrm{C}(4)$	112.33	112.14	112.08
${ }^{\circ} \mathrm{C}(7)$	112.59	112.14	112.08
C(7a)	123.11	123.16	122.97
C(3a)	146.97	147.32	147.27
C(5)	147.57	147.55	147.58
C(2)	154.06	154.64	154.40
$\mathrm{C}=\mathrm{O}$	169.11	167.17	169.12

Table S8. Selected ${ }^{1} \mathrm{H}$ NMR data of $\mathbf{1 5 a}, \mathbf{c}$ and $\mathbf{1 6 a}, \mathbf{b}$ in CDCl_{3}.

	15a	15c	16a	16b
$\mathrm{R}^{1}=$				
$\mathrm{R}^{2}=$				
Frequency	400 MHz	400 MHz	300 MHz	300 MHz
$\mathrm{CH}_{2}-\mathrm{R}^{2}$	$\begin{aligned} & 2.57(\mathrm{~d}, J= \\ & 6.7 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 2.49(\mathrm{~d}, J= \\ & 6.7 \mathrm{~Hz}) \end{aligned}$	3.76-3.82 (m)	$\begin{aligned} & 2.59(\mathrm{~d}, J= \\ & 7.3 \mathrm{~Hz}) \end{aligned}$
$\mathrm{CH}_{2}-\mathrm{R}{ }^{1}$	--	2.98-3.07 (m)	2.97-3.02 (m)	2.98-3.07 (m)
NMe_{2}	2.88 (s)	2.74 (s)	2.75 (s)	2.74 (s)
$\mathrm{CH}_{2}-\mathrm{C}(4)$	3.00 (t, $J=$	2.90 (t, $J=$	2.97-3.02 (m)	$2.92(\mathrm{t}, J=6.2 \mathrm{~Hz})$
E	6.6 Hz)	$6.4 \mathrm{~Hz})$		
를 $\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	3.15 (t, $J=$	2.98-3.07 (m)	3.10 (br. t, $J \approx$	2.98-3.07 (m)
	$6.7 \mathrm{~Hz})$		$6.0 \mathrm{~Hz})$	
${ }^{\infty} \mathrm{OMe}$	3.87 (s)	3.84 (s)	3.85 (s)	3.84 (s)
$\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$	$4.93(\mathrm{~d}, J=$	$3.82(\mathrm{td}, J=6.8$	$3.79 \mathrm{td}, J=6.9$	$3.81(\mathrm{td}, J=6.9$
		$5.5 \mathrm{~Hz})$	$5.6 \mathrm{~Hz}$	$5.5 \mathrm{~Hz})$
NH-C(2)	6.63 (t, $J=$	6.27 (t, $J=$	-_ ${ }^{[a]}$	6.27 (t, $J=$
	$5.8 \mathrm{~Hz})$	5.5 Hz)		$5.5 \mathrm{~Hz})$
$\mathrm{H}-\mathrm{C}(7)$	7.99 (s)	7.93 (s)	7.95 (s)	7.93 (s)
Frequency	100 MHz	75 MHz	75 MHz	75 MHz
$\mathrm{CH}_{2}-\mathrm{C}(4)$	25.59	26.23	26.09	26.38
$\mathrm{CH}_{2}-\mathrm{R}^{1}$	--	38.33	35.18	40.23
NMe_{2}	38.77	38.83	38.57	38.66
$\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$	41.91	44.46	44.19	44.29
$\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$	48.69	49.33	48.21	49.14
OMe	51.50	51.63	51.42	54.45
E $\mathrm{CH}_{2}-\mathrm{R}^{2}$	56.22	57.04	53.90	55.80
$\sim \mathrm{C}(6)$	104.75	104.42	104.37	104.25
\% C(4)	112.42	112.03	112.90	113.27
C(7)	112.42	113.42	112.02	111.86
C(7a)	122.91	122.86	122.85	122.69
C(3a)	146.60	146.92	146.97	146.76
C(5)	148.01	148.06	147.81	147.91
$\mathrm{C}(2)$	154.02	154.30	154.29	154.12
$\mathrm{C}=\mathrm{O}$	169.06	169.11	169.09	168.94

[a] Signal not observed.

11.5 Experimental Data

Compounds 8a-c were prepared as described in literature. ${ }^{[3]}$

6-Amino-4-\{2-[(benzylamino)amino]ethyl\}-2-[(2-phenylethyl)amino]-1,7-

dihydro-8H-imidazo[4,5-g]quinazolin-8-one Trihydrochloride ($\mathbf{6 a} \cdot 3 \mathrm{HCl}$):

According to GP 1, starting from $15 \mathrm{c}(43 \mathrm{mg}, 0.08 \mathrm{mmol})$, chloroformamidinium chloride ($15 \mathrm{mg}, 0.16 \mathrm{mmol}$), and $\mathrm{Me}_{2} \mathrm{SO}_{2}(400 \mathrm{mg})$. The mixture was diluted with sat. aq. NaHCO_{3} solution (5 mL) and the precipitate collected by centrifugation. $\mathrm{FC}\left(\mathrm{MCI}\right.$ gel; $\mathrm{H}_{2} \mathrm{O}+0.1$ vol- $\%$ conc. $\mathrm{HCl} / \mathrm{MeOH} 70: 30$ to $60: 40$) and evaporation yielded $\mathbf{6 a} \cdot 3 \mathrm{HCl}(21 \mathrm{mg}, 48 \%)$ as a white solid.
M.p. $>225^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=3.04(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $\left.2 \mathrm{H} ; \quad \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), \quad 3.38-3.43 \quad\left(\mathrm{~m}, \quad 2 \mathrm{H} ; \quad \mathrm{CH}_{2}-\mathrm{C}(4)\right), \quad 3.58-3.65 \quad(\mathrm{~m}, \quad 2 \mathrm{H} ;$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 3.83-3.88 (m, $\left.2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right)$, 4.55 (br. s, $2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)$), $7.17\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(4)\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.25-7.36\left(\mathrm{~m}, 4 \mathrm{H}\right.$ of $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.43-7.46$ (m, 3 H of $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.59-7.62 (m, 2 H of $\mathrm{C}_{6} \mathrm{H}_{5}$), $7.90 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(9))$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}+1$ drop TFA): $\delta=22.38\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 34.80$ $\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right)$, $44.29\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 45.51\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $49.97\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right)$, 106.64 (C(9)), 128.64128.28, and 128.98 (8 C; C($\left.2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}, 2^{\prime \prime}, 3^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}\right)$), 128.91 (2 C; C(4',4")), 138.28 (2 C; C(1',1")), $151.39 \mathrm{ppm}(\mathrm{C}(2)), 7$ signals hidden by noise; IR (ATR): $\tilde{v}=3408$ (w), 3338 (w), 2953 (br. w), 1678 (s), 1579 (m), 1453 (m), 1267 (w), 1209 (w), 1154 (w), 1073 (w), 739 (m), $696 \mathrm{~cm}^{-1}$ (s); HR-MALDI-MS: m / z (\%): 455.2379 (31), 454.2344 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{7} \mathrm{O}^{+}: 454.2350$).

6-Amino-4-\{2-[(cyclopentylmethyl)amino]ethyl\}-2-[(2-phenylethyl)amino]-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one Trihydrochloride ($\mathbf{6 b} \cdot 3 \mathrm{HCl}$):

According to GP 1, starting from 16a ($29 \mathrm{mg}, 0.05 \mathrm{mmol}$), chloroformamidinium chloride ($11 \mathrm{mg}, 0.10 \mathrm{mmol}$), and $\mathrm{Me}_{2} \mathrm{SO}_{2}(400 \mathrm{mg})$. The mixture was diluted with sat. aq. NaHCO_{3} solution (5 mL) and the precipitate collected by centrifugation. $\mathrm{FC}\left(\mathrm{MCI}\right.$ gel; $\mathrm{H}_{2} \mathrm{O}+0.1$ vol- $\%$ conc. $\mathrm{HCl} / \mathrm{MeOH} 60: 40$ to $50: 50$) and evaporation yielded $\mathbf{6 b} \cdot 3 \mathrm{HCl}(16 \mathrm{mg}, 53 \%)$ as a white solid.
M.p. $>250{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}+1$ drop TFA; assignments based on a DQF-COSY spectrum): $\delta=1.19-1.29$ (m, 2 H; $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{C}\left(2^{\prime \prime}, 5^{\prime \prime}\right)\right), 1.46-1.63\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{2} \mathrm{C}\left(3^{\prime \prime}, 4^{\prime \prime}\right)\right)$, $1.75-1.83$ (m, $\left.2 \mathrm{H} ; \mathrm{H}_{\mathrm{b}}-\mathrm{C}\left(2^{\prime \prime}, 5^{\prime \prime}\right)\right)$, 2.16 (sept., $J=7.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)$), $2.96\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 3.01$ (d, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 3.23\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.53(\mathrm{t}, J=$ 6.9 Hz, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$), 3.77-3.84 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$), 7.16-7.22 (m, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$), 7.27-7.36 (m, $\left.4 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}\right)\right)$, 7.77 (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(9)$), 8.04 (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 8.83 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), 9.21 ppm (br. s, $1 \mathrm{H} ; \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}+1$ drop TFA): $\delta=22.22\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $24.58\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 4{ }^{\prime \prime}\right)\right.$), 30.09 (2 C; C(2",5")), $34.72\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 36.45\left(\mathrm{C}\left(1^{\prime \prime}\right)\right)$, $44.25\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right)$, $45.87\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $51.46\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right)$, $106.80(\mathrm{C}(9)), 109.51$ (C(4)), 126.42 ($\left.\mathrm{C}\left(4^{\prime}\right)\right)$, 128.32 and 128.94 (4 C; C($\left.2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}\right)$), 138.21 ($\mathrm{C}\left(1^{\prime \prime}\right)$), $151.40 \mathrm{ppm}(\mathrm{C}(2))$, 6 signals hidden by noise; IR (ATR): $\tilde{v}=3424$ (w), 2948 (w), 1678 (s), 1575 (w), 1447 (m), 1386 (w), 1200 (w), 1140 (w), 1014 (w), 984 (w), 745 (m), $696 \mathrm{~cm}^{-1}$ (s); HR-MALDI-MS: m / z (\%): $446.2664\left(100,[M+]^{+}\right.$, calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}^{+}$: 446.2663).

6-Amino-4-\{2-[(cyclohexylmethyl)amino]ethyl\}-2-[(2-phenylethyl)amino]-1,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one Trihydrochloride ($6 \mathrm{c} \cdot 3 \mathrm{HCl}$):

According to GP 1, starting from $\mathbf{1 5 c}(35 \mathrm{mg}, 0.06 \mathrm{mmol})$, chloroformamidinium chloride ($13 \mathrm{mg}, 0.12 \mathrm{mmol}$), and $\mathrm{Me}_{2} \mathrm{SO}_{2}(400 \mathrm{mg})$. The mixture was diluted with sat. aq. NaHCO_{3} solution (5 mL) and the precipitate collected by centrifugation. $\mathrm{FC}\left(\mathrm{MCI}\right.$ gel; $\mathrm{H}_{2} \mathrm{O}+0.1$ vol- $\%$ conc. $\mathrm{HCl} / \mathrm{MeOH} 60: 40$ to $50: 50$) and evaporation yielded $\mathbf{6 c} \cdot 3 \mathrm{HCl}(21 \mathrm{mg}, 59 \%)$ as a white solid.
M.p. $>225{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}+1$ drop TFA; assignments based on a DQF-COSY spectrum): $\delta=0.94$ (qd, $J=11.7,2.4 \mathrm{~Hz}$, $\left.2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)\right), 0.89-0.99\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}, 5^{\prime \prime}\right), \mathrm{H}_{2} \mathrm{C}\left(4^{\prime \prime}\right)\right), 1.56-1.78$ (m, $5 \mathrm{H} ;$ $\mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(2^{\prime \prime}, 3^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)$), 2.86 (br. d, $J \approx 6.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)$), 2.95 ($\mathrm{t}, J=$ $\left.7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right)$, 3.16-3.22 (m, $\left.2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 3.44-3.50(m, 2 H ; $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.70-3.79\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 6.35$ (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 7.21-7.23 (m, $\left.1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$, 7.26-7.35 (m, $\left.4 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}\right)\right)$, 7.67 (s, 1 H ; $\mathrm{H}-\mathrm{C}(9)$), 8.79 ppm (br. s, $\left.2 \mathrm{H} ; \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}+1$ drop TFA): $\delta=22.31\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 24.93$ (2 C; $\mathrm{C}\left(3^{\prime \prime}, 5{ }^{\prime \prime}\right)$), $25.50(\mathrm{C}(4$ " $)$), 29.94 (2 C ; $\left.\mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)\right), 34.34\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 34.88\left(\mathrm{C}\left(1^{\prime \prime}\right)\right), 44.05\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right)$, 52.67 $\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 63.18\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $126.29\left(\mathrm{C}\left(4^{\prime}\right)\right), 128.26$ and $128.88(4 \mathrm{C}$; $\left.\mathrm{C}\left(2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}\right)\right), 138.43$ ($\left.\mathrm{C}\left(1^{\prime}\right)\right), 150.91 \mathrm{ppm}(\mathrm{C}(2)), 8$ signals hidden by noise; IR (ATR): $\tilde{v}=3215$ (w), 2924 (w), 2851 (br w), 1674 (s), 1651 (s), 1524 (w), 1445 (s), $1080(\mathrm{~m}), 1009(\mathrm{~m}), 778(\mathrm{w}), 694 \mathrm{~cm}^{-1}(\mathrm{w})$; HR-MALDI-MS: $m / z(\%)$: 461.2850 (33), 460.2816 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}^{+}$: 460.2819), 235.0713 (27).

4-\{2-[(Cyclohexylmethyl)amino]ethyl\}-2-[(thien-2-ylmethyl)amino]-1,7-dihydro-8H-imidazo $[4,5-\mathrm{g}]$ quinazolin-8-one (7a):

According to GP 2, starting from 15a ($68 \mathrm{mg}, 0.12 \mathrm{mmol}$) in anhydrous formamide (2.0 mL). HPLC, evaporation, and lyophilization yielded $7 \mathbf{7 a}(15 \mathrm{mg}$, 28%) as a white solid.
M.p. $>188{ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=0.97$ (qd, $J=12.6$, $2.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)$), 1.13 (tt, $\left.J=12.3,2.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime \prime}\right)\right), 1.20$ (qt, $\left.J=12.6,3.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}, 5^{\prime \prime}\right)\right)$, $1.57-1.86\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right), \mathrm{H}_{\text {eq }}-\mathrm{C}\left(2^{\prime \prime}-6^{\prime \prime}\right)\right)$, 2.87 (t, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1{ }^{\prime \prime}\right)$), 3.21 (br. $\mathrm{t}, J \approx 6.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)$), 3.73 (br. $\mathrm{t}, J \approx 6.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$), $5.08-5.19$ (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$), 7.03 (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$), 7.36 (br. s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)$), 7.51 (dd, $J=5.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4{ }^{\prime}\right)$), 7.95 (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(9)$), 8.13 (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(6)$), 8.87 (br. s, $2 \mathrm{H} ; 2 \mathrm{NH}$), 9.98 (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 12.36 ppm (br. s, $1 \mathrm{H} ; \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta=22.71\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 25.00\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 5{ }^{\prime \prime}\right)\right)$, 25.57 ($\left.\mathrm{C}\left(4^{\prime \prime}\right)\right)$, 30.02 (2 C; C(2",6")), 34.43 (C(1")), $41.46\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 46.94\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $52.71\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 105.77(\mathrm{C}(8 \mathrm{a})), 116.91$ (C(9)), 118.65 (C(4)), 126.30 ($\left.\mathrm{C}\left(5^{\prime}\right)\right)$, 126.93 and 127.29 ($2 \mathrm{C} ; \mathrm{C}\left(3^{\prime}, 4^{\prime}\right)$), 129.53 ($\mathrm{C}(3 \mathrm{a})$), 134.60 ($\mathrm{C}(9 \mathrm{a})$), 139.27 ($\left.\mathrm{C}\left(2^{\prime}\right)\right)$, 143.21 ($\mathrm{C}(4 \mathrm{a})$), $143.70(\mathrm{C}(6)), 151.85$ (C(2)), $160.74 \mathrm{ppm}(\mathrm{C}(8))$; IR (ATR): $\tilde{v}=2926(\mathrm{~m}), 2839(\mathrm{~m}), 1669(\mathrm{~s}), 1631(\mathrm{~m}), 1598(\mathrm{~m}), 1447(\mathrm{~m}), 1370(\mathrm{w})$, 1297 (w), 1277 (w), 1209 (m), 1075 (w), 1013 (w), 891 (w), 848 (w), 792 (w), $699 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-MALDI-MS: m / z (\%): 438.2164 (24), 437.2124 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{OS}^{+}: 437.2118$).

4-\{2-[(Cyclohexylmethyl)amino]ethyl\}-2-\{[2-(morpholin-4-yl)ethyl]amino\}-1,7-dihydro-8H-imidazo[4,5-g] quinazolin-8-one (7b):

According to GP 2, starting from 15b ($140 \mathrm{mg}, 0.25 \mathrm{mmol}$) in anhydrous formamide (4.0 mL). HPLC, evaporation, and lyophilization yielded 7b (22 mg , 20%) as a pale yellow solid.
M.p. $>235{ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right.$, assignments based on a DQF-COSY spectrum): $\delta=0.95$ (qd, $J=11.9,3.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(2^{\prime}, 6^{\prime}\right)$), 1.13 (tt, $\left.J=12.3,3.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime}\right)\right), 1.19\left(\mathrm{tt}, J=12.3,3.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime}, 5^{\prime}\right)\right)$, $1.59-1.82$ (m, $6 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), \mathrm{H}_{\text {eq }}-\mathrm{C}\left(2^{\prime}-6^{\prime}\right)$), 2.67 (br. s, $\left.4 \mathrm{H} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right)$, 2.73-2.78 (br. s, $2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)$), 2.87 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)$), 3.23 (t, $J=7.3 \mathrm{~Hz}$, $\left.2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 3.58$ (t, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2), \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$), 3.67 (br. t, $\left.J \approx 4.8 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 6.98$ (br. s, $0.2 \mathrm{H} ; \mathrm{NH}$), 7.29 (br. s, 0.8 H ; NH), 7.76 (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(9)$), 7.97 (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 8.15 (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(6)$), 8.98 (br. s, $1 \mathrm{H} ; \mathrm{NH}$), 11.94 ppm (br. s, $1 \mathrm{H} ; \mathrm{NH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$: $\delta=22.13\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 24.92\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime}, 5^{\prime}\right)\right), 25.49\left(\mathrm{C}\left(4^{\prime}\right)\right), 29.92\left(2 \mathrm{C} ; \mathrm{C}\left(2^{\prime}, 6^{\prime}\right)\right)$, $34.27\left(\mathrm{C}\left(1^{\prime}\right)\right)$, $46.95\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right)$, $52.24\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right)$, $52.78\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $56.96\left(3 \mathrm{C} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{3}\right), 65.41\left(2 \mathrm{C} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 103.67(\mathrm{C}(8 \mathrm{a})), 115.30(\mathrm{C}(9)), 116.53$ (C(4)), 141.29 (C(3a)), 141.39 (C(9a)), 146.19 (C(4a)), 158.04 (C(6)), 161.21 (C(2)), $162.90 \mathrm{ppm}(\mathrm{C}(8)) ; \quad \mathrm{IR}(\mathrm{ATR}): \tilde{v}=2923(\mathrm{~m}), 2852(\mathrm{~m}), 1639(\mathrm{~s})$, 1621 (s), 1595 (s), 1572 (s), 1435 (s), 1373 (m), 1342 (m), 1304 (m), 1275 (m), $1220(\mathrm{~m}), \quad 1182(\mathrm{~m}), \quad 1100(\mathrm{~m}), \quad 1018(\mathrm{~m}), \quad 873(\mathrm{~m}), \quad 796(\mathrm{~m}), \quad 760 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-MALDI-MS: m / z (\%): 455.2964 (25), 454.2931 (100, $[M+\mathrm{H}]^{+}$, calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{7} \mathrm{O}_{2}+: 454.2925\right)$.

4-\{2-[(Cyclohexylmethyl)amino]ethyl\}-2-[(2-phenylethyl)amino]-1,7-dihydro8 H -imidazo[4,5-g]quinazolin-8-one (7c):

According to GP 2, starting from 15c ($140 \mathrm{mg}, 0.25 \mathrm{mmol}$) in anhydrous formamide (4.0 mL). HPLC, evaporation, and lyophilization yielded 7c (22 mg , purity 95%, yield 19%) as a pale yellow solid.
M.p. $>150{ }^{\circ} \mathrm{C}$ (decomp); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $\delta=0.91$ (qd, $J=11.9$, $2.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)$), 1.10 (tt, $J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime \prime}\right)$), 1.16 (br. tt, $J \approx 12.0,3.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}, 5^{\prime \prime}\right)$), $1.18-1.23$ (m, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)$), 1.26 (br. d, $\left.J \approx 12.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(3^{\prime \prime}, 5^{\prime \prime}\right)\right), 1.58-1.66\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(2^{\prime \prime}, 4^{\prime \prime}, 6^{\prime \prime}\right)\right)$, $2.79(\mathrm{~d}$, $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 2.93$ ($\left.\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.16$ (t, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 3.52\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 3.61 (t , $\left.J=7.2 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 7.20-7.22(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{NH}), 7.30-7.32$ (m, 5 H ; $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.70 (br. s, 1 H ; NH), 7.71 (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(9)$), 7.95 (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(6)$), 8.37 ppm (br. s, $1 \mathrm{H} ; \mathrm{NH})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$): $\delta=22.75$ ($\left.\mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 24.96 ($2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 5^{\prime \prime}\right)$), 25.56 ($\mathrm{C}\left(4^{\prime \prime}\right)$), 29.99 ($2 \mathrm{C} ; \mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)$), 34.72 $\left(\mathrm{C}\left(1^{\prime \prime}\right)\right), 35.27\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 43.63\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 47.29\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 52.71$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 103.86(\mathrm{C}(9))$, 115.26 ($\left.\mathrm{C}(4)\right), 116.07(\mathrm{C}(8 \mathrm{a})), 126.04\left(\mathrm{C}\left(4^{\prime}\right)\right)$, 128.22 (2 C; C(2',6')), 128.65 (2 C; C(3',5')), 136.71 (C(3a)), 139.28 ($\left.\left(1^{\prime}\right)\right)$, 141.07 (C(9a)), 145.65 (C(4a)), 158.49 (C(6)), 161.30 (C(2)), 165.18 ppm (C(8)); IR (ATR): $\tilde{v}=3046(\mathrm{w}), 2923(\mathrm{w}), 2847(\mathrm{w}), 1622(\mathrm{~s}), 1601(\mathrm{~s}), 1570(\mathrm{~s})$, 1435 (m), 1362 (m), 1343 (m), 1186 (m), 1084 (m), 901 (m), 876 (m), $798(\mathrm{~m})$, $749(\mathrm{~m}), 698 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-MALDI-MS: $m / z(\%): 446.2755$ (28), 445.2720 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}^{+}: 445.2710$).

Methyl 5-Amino-1-(N,N-dimethylsulfamoyl)-4-iodo-2-[(thien-2-ylmethyl)amino]-1 H -benzimidazole-6-carboxylate (9a):

According to GP 3, starting from 8a ($1.28 \mathrm{~g}, 3.13 \mathrm{mmol}$) and iodine (925 mg , $3.76 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{sat}$. aq. NaHCO_{3} solution $2: 1(90 \mathrm{~mL})$; workup with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(35 \mathrm{~mL})$ solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 80 \mathrm{~mL})$. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 80:20) yielded $\mathbf{9 a}(1.16 \mathrm{~g}, 70 \%)$ as a yellow solid.
$R_{\mathrm{f}}=0.46\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 80:20, UV 254 nm$)$; m.p. $175-176{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.89$ ($\mathrm{s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}$), 3.90 (s, $3 \mathrm{H} ; \mathrm{OMe}$), 4.99 (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), 6.46 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), 6.69 (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 7.00 (dd, $\left.J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$, 7.15 (dd, $\left.J=3.4,1.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right)$, 7.27 (dd, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$), $8.08 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.79\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 42.01\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.85(\mathrm{OMe}), 73.44$ ($\mathrm{C}(4)$), 104.35 ($\mathrm{C}(6)), 114.35$ ($\mathrm{C}(7)$), 121.77 ($\mathrm{C}(7 \mathrm{a})$), 125.62 ($\mathrm{C}\left(5^{\prime}\right)$), 126.88 and 126.92 (2 C; C($\left.3^{\prime}, 4^{\prime}\right)$), 139.85 (C(2')), 148.65 (C(3a)), 149.75 (C(5)), 154.19 (C(2)), $168.05 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3461$ (w), 3401 (w), 3341 (w), 3117 (w), 2951 (w), 1769 (w), 1685 (m), 1631 (m), 1568 (s), 1538 (m), 1507 (m), 1446 (m), 1424 (m), 1386 (m), 1372 (m), 1334 (m), 1287 (m), 1258 (s$), 1222$ (m), 1186 (s$)$, 1151 (s , 1107 (m), 1074 (m), 1032 (m), 1003 (m), 958 (s$), 887$ (m), 821 (m), $784(\mathrm{~m}), 762(\mathrm{~m}), 745(\mathrm{~m}), 737(\mathrm{~m}), 704(\mathrm{~s}), 674(\mathrm{~m}), 625 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-ESI-MS: $m / z(\%): 535.9920\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{IN}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}^{+}: 535.9918$), 279.1589 (24); elemental analysis calcd (\%) for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{IN}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}$ (535.39): C 35.89, H 3.39, N 13.08; found: C 36.06, H 3.45; N 13.04 .

Methyl 5-Amino-1-(N,N-dimethylsulfamoyl)-4-iodo-2-\{[2-(morpholin-4-

yl)ethyl]amino $\}$ - $\mathbf{1 H}$-benzimidazole-6-carboxylate (9b):

According to GP 3, starting from 8b ($1.21 \mathrm{~g}, 2.84 \mathrm{mmol}$) and iodine (865 mg , $3.42 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{sat}$. aq. NaHCO_{3} solution $2: 1(90 \mathrm{~mL})$; workup with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(35 \mathrm{~mL})$ solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 80 \mathrm{~mL})$. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; hexane/EtOAc 30:70 to $40: 60$) yielded $\mathbf{9 b}(577 \mathrm{mg}, 37 \%)$ as a pale brown solid.
$R_{\mathrm{f}}=0.44\left(\mathrm{SiO}_{2}\right.$; EtOAc, UV 254 nm$)$; m.p. $100-102{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=2.55$ (br. t, $\left.J=4.2 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.67(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H} ;$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $2.93\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 3.70-3.75\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}\right.$ and $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.89$ (s, 3 H ; OMe), 6.44 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), 7.07 (t, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), $8.06 \mathrm{ppm}(\mathrm{s}$, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.80\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 39.41$ $\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.80(\mathrm{OMe}), 53.26\left(2 \mathrm{C} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right)$, $56.51\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 67.05(2 \mathrm{C}$; $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 73.03(\mathrm{C}(4)), 104.01(\mathrm{C}(6)), 114.12(\mathrm{C}(7)), 121.82(\mathrm{C}(7 \mathrm{a})), 148.58$ (C(3a)), 150.04 (C(5)), 154.86 (C(2)), $168.10 \mathrm{ppm}(\mathrm{C}=\mathrm{O}) ; \quad \mathrm{IR}$ (ATR): $\tilde{v}=$ 3459 (w), 3421 (w), 3334 (w), 2949 (w), 2866 (w), 2810 (w), 1686 (m), 1631 (w), 1568 (s), 1511 (m), 1451 (m), 1435 (m), 1422 (m), 1389 (m), 1373 (m), 1354 (m), 1286 (m), 1262 (s), 1229 (m), 1190 (s), 1155 (s), 1109 (s), 1068 (m), 1031 (s), 1020 (s), 992 (m), 968 (s$), 929$ (m), 912 (m), 891 (m), 827 (m), 784 (m), 736 (s), $714(\mathrm{~s}), 707 \mathrm{~cm}^{-1}(\mathrm{~s}) ;$ HR-ESI-MS: $m / z(\%)$: $553.0712\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}^{+}$: 553.0725), 358.2733 (81); elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}$ (552.39): C 36.96, H 4.56, N 15.21; found: C 37.34, H 4.57; N 14.88 .

Methyl 5-Amino-1-(N, N-dimethylsulfamoyl)-4-iodo-2-[(2-phenylethyl)amino]1 H -benzimidazole-6-carboxylate (9c):

According to GP 3, starting from 8c $(1.85 \mathrm{~g}, 4.44 \mathrm{mmol})$ and iodine $(1.40 \mathrm{~g}$, $5.51 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{sat}$. aq. NaHCO_{3} solution 2:1 $(150 \mathrm{~mL})$; workup with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(50 \mathrm{~mL})$ solution and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x} 100 \mathrm{~mL})$. $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 80:20) yielded $9 \mathrm{c}(2.06 \mathrm{~g}, 86 \%)$ as a red-brown foam.
$R_{\mathrm{f}}=0.38\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 70:30, UV 254 nm$) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta=2.73\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 3.04\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 3.86(\mathrm{~s}, 3 \mathrm{H} ;$ OMe), 3.89 (td, $J=6.8,5.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), 6.37 (t, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 6.42 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), 7.21-7.36 (m, $5 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}$), $8.01 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)\right.$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.29\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 38.76\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 44.52\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, 51.92 (OMe), 73.37 (C(4)), 104.21 (C(6)), 114.27 (C(7)), 121.82 (C(7a)), 126.87 (C(4')), 128.89 (2 C; C(2',6')), 128.97 (2 C; C($\left.\left.3^{\prime}, 5^{\prime}\right)\right), 138.57$ (C(1')), 148.76 ($\mathrm{C}(3 \mathrm{a})$), 150.17 ($\mathrm{C}(5)$), 154.78 ($\mathrm{C}(2)$), $168.22 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=$ 3469 (w), 3399 (w), 3354 (w), 3027 (w), 2948 (w), 1680 (w), 1568 (s), 1423 (m), 1391 (m), 1262 (m), 1188 (s), 1152 (s), 960 (m), 786 (w), $712 \mathrm{~cm}^{-1}$ (s); HR-MALDI-MS: m / z (\%): 545.0549 (23), 544.0516 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{IN}_{5} \mathrm{O}_{4} \mathrm{~S}^{+}: 544.0510$), 511.1757 (33), 436.0393 (72), 418.1540 (46), 310.1422 (47).

Methyl 5-Amino-1-(N, N-dimethylsulfamoyl)-2-[(thien-2-ylmethyl)amino]-4-vinyl-1H-benzimidazole-6-carboxylate (11a):

According to GP 4, starting from 9a ($1.16 \mathrm{~g}, 2.17 \mathrm{mmol}$), vinylboronic acid pinacol ester ($\mathbf{1 0} ; 0.59 \mathrm{~mL}, 3.49 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.9 \mathrm{~mL}, 6.33 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O} 5: 1(6.0 \mathrm{~mL}) ;\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](36 \mathrm{mg}, 0.05 \mathrm{mmol})$. Workup with aq. sat.
NaHCO_{3} solution (30 mL) and EtOAc (3x 30 mL) and $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 80:20) yielded crude 11a ($769 \mathrm{mg}, \mathrm{ca} .81 \%$) as a pale brown solid. $R_{\mathrm{f}}=0.24\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 80:20, UV 254 nm$) ;$ m.p. $135-138{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.89\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 3.89(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.95(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), $5.72\left(\mathrm{dd}, J=11.8,2.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{C} H_{\mathrm{E}}\right.$), 6.16 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $6.30\left(\mathrm{dd}, J=17.8,2.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{CH}_{\mathrm{z}}\right.$), 6.67 (t, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ NH), 6.93 (dd, $J=17.8,11.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{CH}_{2}$), $6.99(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$; $\left.\mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right), 7.10\left(\mathrm{dd}, J=3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 7.25(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$), $8.05 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.79$ (2 C; NMe_{2}), $41.93\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.61$ (OMe), 104.70 (C(6)), 111.37 (C(4)), 113.46 ($\mathrm{C}(7)$), $119.72\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 123.40(\mathrm{C}(7 \mathrm{a})), 125.46\left(\mathrm{C}\left(5^{\prime}\right)\right), 126.49$ and $126.82(2 \mathrm{C}$; $\left.\mathrm{C}\left(3^{\prime}, 4^{\prime}\right)\right)$, $128.42\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 140.39\left(\mathrm{C}\left(2^{\prime}\right)\right), 145.77(\mathrm{C}(3 \mathrm{a}))$, 146.79 (C(5)), 154.39 (C(2)), $168.96 \mathrm{ppm}(\mathrm{C}=\mathrm{O}) ; \quad \mathrm{IR}(\mathrm{ATR}): \tilde{v}=3472$ (w), 3401 (w), 2949 (w), 1683 (w), 1570 (s), 1505 (w), 1451 (w), 1429 (w), 1411 (w), 1371 (m), 1334 (w), 1306 (w), 1289 (m), 1261 (m), 1207 (s), 1156 (s), 1105 (w), 1050 (m), 1032 (m), 961 (s), 884 (w), 850 (w), 822 (w), 796 (m), 772 (w), 757 (w), 743 (w), 718 (s), $700 \mathrm{~cm}^{-1}$ (s); HR-ESI-MS: $m / z(\%)$: 437.1125 (23), $436.1096\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}: 436.1108$).

Methyl 5-Amino-1-(N, N-dimethylsulfamoyl)-2-\{[2-(morpholin-4-yl)ethyl]amino\}-4-vinyl-1 H -benzimidazole-6-carboxylate (11b):

According to GP 4, starting from 9b ($577 \mathrm{mg}, 1.04 \mathrm{mmol}$), vinylboronic acid pinacol ester ($\mathbf{1 0} ; 0.28 \mathrm{~mL}, 1.67 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.43 \mathrm{~mL}, 3.03 \mathrm{mmol})$ in DME $/ \mathrm{H}_{2} \mathrm{O}$ 5:1 $(3.0 \mathrm{~mL})$; $\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](17 \mathrm{mg}, 0.024 \mathrm{mmol})$. Workup with aq. sat. NaHCO_{3} solution (15 mL) and EtOAc (3 x 15 mL) and $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 30:70) yielded crude 11b ($368 \mathrm{mg}, 78 \%$) as a pale brown solid. $R_{\mathrm{f}}=0.25\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 30:70, UV 254 nm$) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=2.54\left(\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.67(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$;
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $2.93\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 3.68\left(\mathrm{q}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}\right), 3.75(\mathrm{t}, J=$ $\left.4.6 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.88(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe})$, $5.68(\mathrm{dd}, J=11.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{CH}=\mathrm{C} H_{\mathrm{E}}$), 6.16 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $6.20\left(\mathrm{dd}, J=17.9,2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{C} H_{\mathrm{Z}}\right), 6.92$ (dd, $J=17.9,11.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{CH}_{2}$), $6.99(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), $8.04 \mathrm{ppm}(\mathrm{s}$, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=38.81\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 39.41$ $\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.58(\mathrm{OMe}), 53.28\left(2 \mathrm{C} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 56.55\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 67.04(2 \mathrm{C}$; $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 104.31(\mathrm{C}(6)), 110.99(\mathrm{C}(4)), 113.27(\mathrm{C}(7)), 119.41\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 123.42$ ($\mathrm{C}(7 \mathrm{a})$), $128.68\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 146.18(\mathrm{C}(3 \mathrm{a})), 146.76(\mathrm{C}(5)), 155.01(\mathrm{C}(2)), 169.03$ ppm (C=O); IR (ATR): $\tilde{v}=3359$ (w), 2948 (w), 1683 (w), 1640 (w), 1579 (s), 1455 (w), 1429 (m), 1385 (m), 1347 (m), 1271 (m), 1205 (m), 1155 (s$), 1115$ (m), $1051(\mathrm{~m}), 964(\mathrm{~m}), 914(\mathrm{w}), 854(\mathrm{w}), 796(\mathrm{w}), 748(\mathrm{~m}), 713 \mathrm{~cm}^{-1}(\mathrm{~s})$; HR-ESI-MS: $m / z(\%): 453.1905\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\left.\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}^{+}: 453.1915\right)$, 454.1936 (27).

Methyl 5-Amino-1-(N, N-dimethylsulfamoyl)-2-[(2-phenylethyl)amino]-4-vinyl1 H -benzimidazole-6-carboxylate (11c):

According to GP 4, starting from $\mathbf{9 c}(1.35 \mathrm{~g}, 2.49 \mathrm{mmol})$, vinylboronic acid pinacol ester ($\mathbf{1 0} ; 0.67 \mathrm{~mL}, 3.98 \mathrm{mmol})$, and $\mathrm{Et}_{3} \mathrm{~N}(1.02 \mathrm{~mL}, 7.22 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O} 5: 1$ $(6.0 \mathrm{~mL}) ;\left[\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](41 \mathrm{mg}, 0.06 \mathrm{mmol})$. Workup with aq. sat. NaHCO_{3} solution (30 mL) and EtOAc (3 x 30 mL) and FC (SiO_{2}; cyclohexane/EtOAc 80:20 to $70: 30$) yielded $11 \mathrm{c}(920 \mathrm{mg}, 83 \%)$ as a green oil.
$R_{\mathrm{f}}=0.23\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 80:20, UV 254 nm); ${ }^{1} \mathrm{H}$ NMR (300 MHz , CDCl_{3}): $\delta=2.74\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 3.02\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 3.84(\mathrm{td}, J=$ 7.0, $5.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), 3.85 (s, $3 \mathrm{H} ; \mathrm{OMe}$), 5.69 (dd, $J=11.8,2.1 \mathrm{~Hz}, 1 \mathrm{H} ;$ $\mathrm{CH}=\mathrm{CH}_{\mathrm{E}}$), 6.13 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $6.25(\mathrm{dd}, J=17.8,2.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{CH}$), 6.34 ($\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), $6.92\left(\mathrm{dd}, J=17.8,11.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}=\mathrm{CH}_{2}\right.$), $7.20-7.35(\mathrm{~m}$, $5 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}$), $7.99 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=35.39$ $\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right)$, $38.78\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 44.49\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.68(\mathrm{OMe}), 104.55(\mathrm{C}(6))$,
$111.24(\mathrm{C}(4)), 113.43(\mathrm{C}(7)), 119.57\left(\mathrm{CH}=\mathrm{CH}_{2}\right), 123.45 \quad(\mathrm{C}(7 \mathrm{a})), 126.82$ $\left(C H=\mathrm{CH}_{2}\right), 128.75\left(\mathrm{C}\left(4^{\prime}\right)\right), 128.86\left(2 \mathrm{C} ; \mathrm{C}\left(2^{\prime}, 6^{\prime}\right)\right), 128.94\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime}, 5^{\prime}\right)\right)$, 138.73 $\left(\mathrm{C}\left(1^{\prime}\right)\right), 146.31(\mathrm{C}(3 \mathrm{a})), 146.94(\mathrm{C}(5)), 154.98$ (C(2)), $169.14 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3477$ (w), 3424 (w), 3343 (w), 3021 (w), 2867 (w), 1682 (w), 1576 (s), 1498 (w), 1431 (m), 1386 (m), 1263 (m), 1210 (s), 1140 (s), 1024 (w), $953(\mathrm{~m}), 901(\mathrm{w}), 797(\mathrm{w}), 705 \mathrm{~cm}^{-1}(\mathrm{~s})$; HR-MALDI-MS: $\mathrm{m} / \mathrm{z}(\%)$: 444.1701 (50, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}^{+}: 444.1700$), 336.1578 (100), 235.0713 (21), 232.0954 (24).

Methyl 5-Amino-1-(N, N-dimethylsulfamoyl)-4-(2-hydroxyethyl)-2-[(thien-2-ylmethyl)amino]-1 \boldsymbol{H}-benzimidazole-6-carboxylate (12a):

According to GP 5, starting from 11a ($769 \mathrm{mg}, 1.76 \mathrm{mmol}$) and a 0.5 m solution 9BBN in THF ($10.5 \mathrm{~mL}, 5.25 \mathrm{mmol}$); $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(1.80 \mathrm{~mL}, 17.6 \mathrm{mmol})$ and 1 m aq NaOH solution ($18.2 \mathrm{ml}, 17.6 \mathrm{mmol}$). Workup with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(50 \mathrm{~mL})$ and EtOAc (3 x 50 mL) and FC (SiO_{2}; cyclohexane/EtOAc 50:50 to 40:60) yielded crude 12a ($439 \mathrm{mg}, 55 \%$) as a yellow solid.
$R_{\mathrm{f}}=0.26\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 50:50, UV 254 nm$)$; m.p. $130-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.60-1.86$ (br. s, $1 \mathrm{H} ; \mathrm{OH}$), $2.89\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right)$, $3.04\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.88(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.04(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$; $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), 4.89 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), 5.97 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $6.73(\mathrm{t}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 6.97 (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$), 7.09 (dd, $J=3.5$, $\left.1.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right), 7.24\left(\mathrm{dd}, J=5.1,1.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 8.03 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H}$; $\mathrm{H}-\mathrm{C}(7)$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.47\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 38.77(2 \mathrm{C}$; $\left.\mathrm{NMe}_{2}\right), 41.98\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.62(\mathrm{OMe}), 61.80\left(\mathrm{CH}_{2} \mathrm{OH}\right), 105.16(\mathrm{C}(6)), 112.22$ ($\mathrm{C}(4)$), $112.55(\mathrm{C}(7)), 123.04(\mathrm{C}(7 \mathrm{a})), 125.47\left(\mathrm{C}\left(5^{\prime}\right)\right), 126.51$ and $126.89(2 \mathrm{C}$; $\left.\mathrm{C}\left(3^{\prime}, 4^{\prime}\right)\right), 140.15\left(\mathrm{C}\left(2^{\prime}\right)\right), 145.84(\mathrm{C}(3 \mathrm{a})), 147.55(\mathrm{C}(5)), 153.93(\mathrm{C}(2)), 169.00 \mathrm{ppm}$ (C=O); IR (ATR): $\tilde{v}=3372$ (w), 2948 (w), 1683 (w), 1574 (s), 1504 (w), 1456 (w), 1426 (m), 1370 (m), 1273 (m), 1202 (s), 1152 (s$), 1077$ (m), 1036 (m), 963 (s), 891 (w), 852 (m), 791 (m), 743 (m), $706(\mathrm{~s}), 615 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-ESI-MS:
m / z (\%): 455.1243 (24), 454.1207 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}{ }^{+}$: 454.1213); elemental analysis: calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}_{2}$ (453.54): C 47.67, H 5.11; found: C 47.84, H 5.31 .

Methyl 5-Amino-1-(\mathbf{N}, N-dimethylsulfamoyl)-4-(2-hydroxyethyl)-2-\{[(2-morpholin-4-yl)ethyl]amino\}-1H-benzimidazole-6-carboxylate (12b):

According to GP 5, starting from 11b ($368 \mathrm{mg}, 0.81 \mathrm{mmol}$) and a 0.5 m solution of 9-BBN in THF ($4.9 \mathrm{~mL}, 2.45 \mathrm{mmol}$); $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(0.82 \mathrm{~mL}, 8.10 \mathrm{mmol})$ and 1 m aq NaOH solution ($4.4 \mathrm{~mL}, 8.10 \mathrm{mmol}$). Workup with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL) and $\mathrm{EtOAc}\left(3 \mathrm{x} 25 \mathrm{~mL}\right.$) and $\mathrm{FC}\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc} / \mathrm{MeOH} 95: 5\right)$ yielded crude 12b ($176 \mathrm{mg}, 46 \%$) as a brown solid.
$R_{\mathrm{f}}=0.19\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc} / \mathrm{MeOH} 95: 5\right.$, UV 254 nm$) ;$ m.p. $52-54{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.48-1.78$ (br. s, $1 \mathrm{H} ; \mathrm{OH}$), 2.54 (br. s, $4 \mathrm{H} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$), 2.67 (t, $\left.J=5.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 2.96\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 2.99(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H} ;$ $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $3.61\left(\mathrm{q}, ~ J=5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}\right.$), 3.75 (br. $\mathrm{t}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$; $\left.\mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.89(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 4.02\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{OH}\right), 7.03(\mathrm{t}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), $8.03 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $29.53\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 38.79\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 39.44\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.61$ (OMe), 53.23 $\left(2 \mathrm{C} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 56.26\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 61.71\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 66.95\left(2 \mathrm{C} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right)$, 104.90 (C(6)), 111.95 (C(4)), 112.39 (C(7)), 123.09 (C(7a)), $145.90(\mathrm{C}(3 \mathrm{a}))$, $147.36(\mathrm{C}(5)), 154.40(\mathrm{C}(2)), 169.05 \mathrm{ppm}(\mathrm{C}=\mathrm{O}) ; \quad \mathrm{IR}(\mathrm{ATR}): \tilde{v}=3361(\mathrm{w})$, 2949 (w), 2855 (w), 1683 (w), 1581 (s), 1455 (m), 1427 (m), 1376 (m), 1348 (m), 1272 (m), 1202 (s), 1154 (s), 1114 (s), 1068 (m), 1035 (m), 961 (m), 914 (m), $858(\mathrm{~m}), 792(\mathrm{~m}), 745(\mathrm{~m}), 714 \mathrm{~cm}^{-1}(\mathrm{~s}) ;$ HR-ESI-MS: $m / z(\%): 472.2038$ (27), 471.2008 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}^{+}$: 471.2020).

Methyl 5-Amino-1-(N,N-dimethylsulfamoyl)-4-(2-hydroxyethyl)-2-[(2-phenylethyl)amino]- 1 H -benzimidazole-6-carboxylate (12c):

According to GP 5, starting from 11c ($403 \mathrm{mg}, 0.91 \mathrm{mmol}$) and a 0.5 m solution of 9-BBN in THF ($1.8 \mathrm{~mL}, 0.91 \mathrm{mmol}$); $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ in $\mathrm{H}_{2} \mathrm{O}(0.46 \mathrm{~mL}, 4.5 \mathrm{mmol})$ and 1 m aq NaOH solution ($4.5 \mathrm{~mL}, 4.5 \mathrm{mmol}$). Workup with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) and EtOAc (3 x 30 mL) and FC (SiO_{2}; cyclohexane/EtOAc 50:50 to 0:100) yielded $\mathbf{1 2 c}(250 \mathrm{mg}, 60 \%)$ as a yellow solid.
$R_{\mathrm{f}}=0.20\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 50:50, UV 254 nm$)$; m.p. $118-120^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.52-1.73$ (br. s, $1 \mathrm{H} ; \mathrm{OH}$), 2.75 (s, $6 \mathrm{H} ; \mathrm{NMe}_{2}$), 2.97-3.03 (m, $4 \mathrm{H} ; 2 \mathrm{CH}_{2}$), 3.78 (td, $J=6.9,5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), $3.85(\mathrm{~s}, 3 \mathrm{H}$; OMe), $4.03\left(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{OH}\right.$), 5.94 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $6.37(\mathrm{t}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{NH}$), 7.20-7.35 (m, $5 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}$), $7.97 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)\right.$); ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): \delta=29.82\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), \quad 35.32 \quad\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), \quad 38.84$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 44.56\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.79(\mathrm{OMe}), 61.84\left(\mathrm{CH}_{2} \mathrm{OH}\right), 104.94(\mathrm{C}(6))$, 112.09 ($\mathrm{C}(4)$), 112.41 ($\mathrm{C}(7)), 122.93$ ($\mathrm{C}(7 \mathrm{a})$), 126.76 ($\mathrm{C}\left(4^{\prime}\right)$), 128.78 (2 C; C(2', $\left.6^{\prime}\right)$), 128.81 ($2 \mathrm{C} ; \mathrm{C}\left(3^{\prime}, 5^{\prime}\right)$), 138.32 ($\mathrm{C}\left(1^{\prime}\right)$), 145.83 (C(3a)), 147.39 (C(5)), 154.21 (C(2)), $168.97 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3468(\mathrm{w}), 3402(\mathrm{w}), 3342(\mathrm{w}), 1686(\mathrm{~m})$, 1569 (s), 1453 (w), 1425 (m), 1368 (m), 1266 (m), 1192 (s), 1150 (s), 967 (m), 787 (w), $719 \mathrm{~cm}^{-1}$ (s); HR-MALDI-MS: m / z (\%): 463.1832 (26), 462.1800 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}^{+}: 462.1806$), 355.1758 (98), 354.1683 (85).

Methyl 5-Amino-1-(N, N-dimethylsulfamoyl)-4-(2-phthalimidoethyl)-2-[(thien-

 2-yl-methyl)amino]-1 H -benzimidazole-6-carboxylate (13a):

According to GP 6, starting from $\mathrm{PPh}_{3}(508 \mathrm{mg}, 1.93 \mathrm{mmol})$ in anhydrous THF (4.4 mL), DIAD ($0.39 \mathrm{~mL} ; 1.94 \mathrm{mmol}$), 12a ($439 \mathrm{mg}, 0.96 \mathrm{mmol}$), and phthalimide ($288 \mathrm{mg}, 1.95 \mathrm{mmol}$) in anhydrous THF (7 mL). $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc $70: 30$ to $60: 40$), yielded $\mathbf{1 3 a}(386 \mathrm{mg}, 69 \%$) as a yellow solid.
$R_{\mathrm{f}}=0.44\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 50:50, UV 254 nm$) ;$ m.p. $215-218{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.84\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 3.26(\mathrm{t}, J \approx 7.6 \mathrm{~Hz}, 2 \mathrm{H}$; $\left.\mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 3.88 ($\mathrm{s}, 3 \mathrm{H}$; OMe), 3.98 (t, $\left.J \approx 7.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 4.81 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), 6.29 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $6.52(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 6.99 (dd, $\left.J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$, 7.12 (dd, $J=3.5,1.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$), 7.25 (dd, $\left.J=5.1,1.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$, $7.68-7.76$ (m, $2 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}, 5^{\prime \prime}\right)$), 7.81-7.89 (m, $2 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}, 6^{\prime \prime}\right)$), $8.02 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=24.27\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 35.84\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 38.79\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 41.79$ $\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.51(\mathrm{OMe}), 104.50(\mathrm{C}(6)), 109.76(\mathrm{C}(4)), 112.98(\mathrm{C}(7)), 122.82$ $(\mathrm{C}(7 \mathrm{a})), 123.16\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 6^{\prime \prime}\right)\right), 125.44\left(\mathrm{C}\left(5^{\prime}\right)\right), 126.71$ and $126.80\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime}, 4^{\prime}\right)\right)$, 132.30 ($2 \mathrm{C} ; \mathrm{C}\left(1^{\prime \prime}, 2^{\prime \prime}\right)$), 133.87 ($2 \mathrm{C} ; \mathrm{C}\left(4^{\prime \prime}, 5^{\prime \prime}\right)$), 140.32 ($\mathrm{C}\left(2^{\prime}\right)$), 147.02 ($\mathrm{C}(3 \mathrm{a})$), $147.42(\mathrm{C}(5)), 154.16(\mathrm{C}(2)), 168.43\left(2 \mathrm{C} ; \mathrm{N}(\mathrm{C}=\mathrm{O})_{2}\right), 169.04 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3463$ (w), 3415 (w), 3347 (w), 2944 (w), 1767 (w), 1702 (s), 1640 (w), 1582 (s), 1502 (w), 1466 (w), 1425 (m), 1395 (m), 1368 (m), 1356 (m), 1341 (m), 1314 (w), 1295 (w), 1272 (s), 1196 (m), 1142 (s), 1114 (s), 1050 (s), 964 (s), 940 (m), 892 (m), 868 (w), 856 (w), 837 (w), 810 (w), 792 (m), 769 (w), $743(\mathrm{~m}), 710(\mathrm{~s}), 666(\mathrm{~m}), 621 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-ESI-MS: $m / z(\%): 584.1442(35)$, $583.1409\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{+}$: 583.1428) .

Methyl 5-Amino-1-(N,N-dimethylsulfamoyl)-4-(2-phthalimidoethyl)-2-\{[(2-morpholin-4-yl)ethyl]amino\}-1 H -benzimidazole-6-carboxylate (13b):

According to GP 6, starting from $\mathrm{PPh}_{3}(144 \mathrm{mg}, 0.71 \mathrm{mmol})$ in anhydrous THF (2.0 mL), DIAD ($0.14 \mathrm{~mL} ; 0.71 \mathrm{mmol}$), 12b ($167 \mathrm{mg}, 0.36 \mathrm{mmol}$), and phthalimide ($105 \mathrm{mg}, 0.71 \mathrm{mmol}$) in anhydrous THF (2.0 mL). MPLC $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ 100:0 to 0:100 within $30 \mathrm{~min}, 0: 100$ for 12 min) yielded $\mathbf{1 3 b}(150 \mathrm{mg}, 71 \%)$ as a yellow foam.
$R_{\mathrm{f}}=0.18\left(\mathrm{SiO}_{2}\right.$; EtOAc, UV 254 nm$)$; m.p. $96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta=2.46-2.56\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.60\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, 2.87 ($\mathrm{s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}$), $3.17\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)\right.$), $3.54(\mathrm{q}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}$; $\mathrm{CH}_{2} \mathrm{NH}$), 3.72 (br. t, $\left.J=4.4 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.85(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 3.92$ (t , $\left.J=7.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 6.25$ (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $6.79(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H} ;$ NH), 7.68-7.74 (m, $\left.2 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}, 5^{\prime}\right)\right), 7.80-7.85$ (m, $2 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime}, 6^{\prime}\right)$), $7.98 \mathrm{ppm}(\mathrm{s}$, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.38\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 35.91$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 38.95\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 39.41\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.62(\mathrm{OMe}), 53.45(2 \mathrm{C}$; $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 56.79\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 61.17\left(2 \mathrm{C} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 104.29(\mathrm{C}(6)), 109.47$ ($\mathrm{C}(4)$), 112.94 ($\mathrm{C}(7)$), 123.01 ($\mathrm{C}(7 \mathrm{a})$), 123.29 (2 C; C($\left.3^{\prime}, 6^{\prime}\right)$), 132.46 (2 C; C($\left.1^{\prime}, 2^{\prime}\right)$), 133.97 (2 C; C(4', $\left.5^{\prime}\right)$), 147.55 ($2 \mathrm{C} ; \mathrm{C}(3 \mathrm{a}, 5)$), 154.95 (C(2)), 168.56 (2 C; $\left.\mathrm{N}(\mathrm{C}=\mathrm{O})_{2}\right), 169.24 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{\mathrm{v}}=3476(\mathrm{w}), 3363(\mathrm{w}), 2948(\mathrm{w})$, 2860 (w), 2811 (w), 1771 (w), 1707 (s), 1585 (s), 1456 (w), 1428 (m), 1393 (m), 1349 (m), 1274 (m), 1204 (m), 1155 (m), 1114 (m), 1067 (m), $960(\mathrm{~m}), 792(\mathrm{~m})$, $715 \mathrm{~cm}^{-1}(\mathrm{~s})$; HR-ESI-MS: $m / z(\%): 601.2249$ (38), $600.2216\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{7} \mathrm{O}_{7} \mathrm{~S}^{+}: 600.2235$), 358.2739 (36), 334.2161 (47), 295.1324 (42), 279.1376 (26), 239.1061 (21), 217.0828 (21), 177.0901 (26).

Methyl 5-Amino-1-(N,N-dimethylsulfamoyl)-4-(2-phthalimidoethyl)-2-[(2-phenylethyl)amino]- 1 H -benzimidazole-6-carboxylate (13c):

According to GP 6, starting from $\mathrm{PPh}_{3}(696 \mathrm{mg}, 2.65 \mathrm{mmol})$ in anhydrous THF (6.0 mL), DIAD ($0.53 \mathrm{~mL}, 2.67 \mathrm{mmol}$), 12c ($613 \mathrm{mg}, 1.33 \mathrm{mmol}$), and phthalimide ($394 \mathrm{mg}, 2.68 \mathrm{mmol}$) in anhydrous THF (10 mL). $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; cyclohexane/AcOEt 67:33 to 50:50) yielded $\mathbf{1 3 c}$ ($733 \mathrm{mg}, 93 \%$) as a yellow solid.
$R_{\mathrm{f}}=0.54\left(\mathrm{SiO}_{2}\right.$; cyclohexane/EtOAc 50:50, UV 254 nm$)$; m.p. $192-193{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.71\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right.$), $2.97(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$; $\left.\mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.22\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 3.70(\mathrm{td}, J=6.9,5.6 \mathrm{~Hz}, 2 \mathrm{H}$; $\mathrm{CH}_{2} \mathrm{NH}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$; OMe), $3.96\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 6.21$ (br. t, $J \approx 5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 6.24 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), $7.21-7.35\left(\mathrm{~m}, 5 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.66-7.71$ (m, $2 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}, 55^{\prime \prime}\right)$), 7.77-7.83 (m, $2 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}, 6^{\prime \prime}\right), 7.80 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=24.40\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 35.43\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 35.95$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 38.77\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 44.33\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.57(\mathrm{OMe}), 104.35(\mathrm{C}(6))$, 109.68 ($\mathrm{C}(4)$), 112.92 ($\mathrm{C}(7)$), 122.86 ($\mathrm{C}(7 \mathrm{a})$), 123.25 ($2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 6^{\prime \prime}\right)$), 126.72 (C(4')), 128.80 (2 C; C(2', $\left.6^{\prime}\right)$), 129.00 (2 C; C($\left.\left.3^{\prime}, 5^{\prime}\right)\right), 132.45$ (2 C; C(1",2')), 133.91 (2 C; C(4",5")), 138.81 (C(1')), 147.53 (C(3a)), 147.55 (C(5)), 154.76 (C(2)), $168.50\left(2 \mathrm{C} ; \mathrm{N}(\mathrm{C}=\mathrm{O})_{2}\right), 169.19 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{\mathrm{v}}=3388(\mathrm{w}), 3030(\mathrm{w})$, 2946 (w), 1771 (w), 1710 (m), 1684 (w), 1591 (s), 1516 (w), 1427 (m), 1392 (m), 1273 (m), 1208 (s), 1154 (s), 1106 (m), 1068 (w), 955 (m), $794 \mathrm{~cm}^{-1}$ (w); HR-MALDI-MS: m / z (\%): 592.2051 (24), 591.2020 ($68,[M+H]+$, calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}^{+}$: 591.2020), 483.1906 (100); elemental analysis calcd (\%) for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{~S}$ (590.66): C 58.97, H 5.12, N 14.23; found C 58.77, H 5.16, N 14.04.

Methyl 5-Amino-4-(2-aminoethyl)-1-(N, N-dimethylsulfamoyl)-2-[(thien-2-ylmethyl)amino]-1 \boldsymbol{H}-benzimidazole-6-carboxylate (14a):

According to GP 7, starting from 13a ($386 \mathrm{mg}, 0.66 \mathrm{mmol}$) and hydrazine monohydrate ($0.32 \mathrm{~mL}, 6.66 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{THF} 95: 5(14 \mathrm{~mL})$. Workup with 1 m aq. NaOH solution (54 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50 \mathrm{~mL}$) yielded crude 14a ($300 \mathrm{mg}, 99 \%$) as a yellow solid.
$R_{\mathrm{f}}=0.14\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 25 \%\right.$ aq. $\mathrm{NH}_{3} 94: 5: 1$, UV 254 nm$) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=2.88$ (s, $6 \mathrm{H} ; \mathrm{NMe}_{2}$), $3.04-3.10\left(\mathrm{~m} ; 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right.$), 3.88 (s, 3 H ; OMe), 4.92 (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$), 6.64 (t, $J=5.8 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{NH}), 6.98$ (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$), 7.09 (br. d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$), 7.24 (dd, $J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$), $8.01 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.51\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 38.76\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 41.06$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 41.88\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.54(\mathrm{OMe}), 104.85(\mathrm{C}(6)), 112.33(\mathrm{C}(4))$, $112.59(\mathrm{C}(7))$, 123.11 ($\mathrm{C}(7 \mathrm{a})$), 125.41 ($\left.\mathrm{C}\left(5^{\prime}\right)\right)$, 126.37 and 126.76 (2 C; $\mathrm{C}\left(3^{\prime}, 4^{\prime}\right)$), 140.61 (C(2')), 146.97 (C(3a)), 147.57 (C(5)), 154.06 (C(2)), $169.11 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3398$ (w), 3348 (w), 2925 (w), 1682 (m), 1582 (s), 1502 (w), 1455 (m), 1425 (m), 1388 (m), 1366 (m), 1334 (w), 1273 (m), 1245 (m), 1201 (s), 1153 (s , 1100 (m), 1036 (m), 965 (m), 901 (m), 859 (w), 839 (m), 791 (m), 761 (w), 743 (m), 721 (s), $646(\mathrm{w}), 615 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-ESI-MS: $m / z(\%): 454.1408$ (23), $453.1382\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}$: 453.1373).

Methyl 5-Amino-4-(2-aminoethyl)-1-(N, N-dimethylsulfamoyl)-2-\{[(2-morpholin-4-yl)ethyl]amino\}-1 H -benzimidazole-6-carboxylate (14b):

According to GP 7, starting from 13b ($150 \mathrm{mg}, 0.25 \mathrm{mmol}$) and hydrazine monohydrate ($122 \mu \mathrm{~L}, 2.50 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{THF} 95: 5(14 \mathrm{~mL})$. Workup with 1 m aq. NaOH solution $(54 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 50 \mathrm{~mL})$ yielded $\mathbf{1 4 b}(109 \mathrm{mg}, 93 \%)$ as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; assignments based on a DQF-COSY spectrum): $\delta=2.51$ (br. t, $\left.J=4.4 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.63\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, 2.92 (s, $6 \mathrm{H} ; \mathrm{NMe}_{2}$), 2.97-3.07 (m, $\left.4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.62(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$; $\mathrm{CH}_{2} \mathrm{NH}$), 3.72 (br. t, $\left.J=4.4 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.85(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 6.88$ (t, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), $7.97 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; assignments based on a DEPT and a HSQC spectrum): $\delta=29.39\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $38.79\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 39.43\left(\mathrm{CH}_{2} \mathrm{NH}\right), 40.98\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $51.51(\mathrm{OMe}), 53.30$ ($\left.2 \mathrm{C} ; \mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 56.60\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 67.04\left(2 \mathrm{C} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 104.49(\mathrm{C}(6)), 112.14$ (2 C; C(4,7)), 123.16 (C(7a)), 147.32 (C(3a)), 147.55 (C(5)), 154.64 (C(2)), 169.17 ppm (C=O); IR (ATR): $\tilde{v}=3419$ (w), 3366 (w), 2950 (w), 2855 (w), 1683 (w), 1585 (s), 1456 (w), 1431 (m), 1392 (w), 1349 (w), 1274 (m), 1207 (m), $1156(\mathrm{~m}), 1115(\mathrm{~m}), 1051(\mathrm{w}), 966(\mathrm{w}), 906(\mathrm{~s}), 794(\mathrm{w}), 725(\mathrm{~s}), 647 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-ESI-MS: m / z (\%): 471.2210 (29), 470.2183 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{7} \mathrm{O}_{5} \mathrm{~S}^{+}: 470.2180$).

Methyl 5-Amino-4-(2-aminoethyl)-1-(N,N-dimethylsulfamoyl)-2-[(2-phenyl-ethyl)amino]-1H-benzimidazole-6-carboxylate (14c):

According to GP 7, starting from 13c ($714 \mathrm{mg}, 1.21 \mathrm{mmol}$) and hydrazine monohydrate ($0.59 \mathrm{~mL}, 12.2 \mathrm{mmol}$) in $\mathrm{MeOH} / \mathrm{THF} 95: 5$ (30 mL). Workup with 1 M aq. NaOH solution $(100 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 100 \mathrm{~mL})$ yielded $\mathbf{1 4 c}(452 \mathrm{mg}$, 81\%) as a pale yellow solid.
$R_{\mathrm{f}}=0.16\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 25 \%\right.$ aq. $\left.\mathrm{NH}_{3} 94: 5: 1\right) ;{ }^{1} \mathrm{H} \operatorname{NMR} \quad(300 \mathrm{MHz}$, CDCl_{3}): $\delta=2.72$ (s, $6 \mathrm{H} ; \mathrm{NMe}_{2}$), 2.96-3.01 (m, $6 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4), \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)$), 3.80 (td, $J=6.8,5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}$), 3.82 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OMe}$), 6.28 (t, $J=5.5 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{NH}$), 7.17-7.32 (m, $5 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}$), $7.93 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=29.45\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 35.23\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 38.62\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right)$, $41.05\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 44.24\left(\mathrm{CH}_{2} \mathrm{NH}\right), 51.50(\mathrm{OMe})$, $104.42(\mathrm{C}(6))$, $112.08(2 \mathrm{C}$; $\mathrm{C}(4,7)$), 122.97 ($\mathrm{C}(7 \mathrm{a}))$, 126.62 ($\left.\mathrm{C}\left(4^{\prime}\right)\right)$, 128.66 ($2 \mathrm{C} ; \mathrm{C}\left(2^{\prime}, 6^{\prime}\right)$), 128.77 (2 C ; C(3',5')), 138.65 (C(1')), 147.27 (C(3a)), 147.58 (C(5)), 154.40 (C(2)), 169.12 ppm (C=O); IR (ATR): $\tilde{v}=3408$ (w), 2947 (w), 1682 (w), 1574 (s), 1426 (m), 1362 (w), 1270 (m), 1201 (s), 1150 (s), 1046 (w), 961 (m), 792 (w), 742 (w), $700 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-MALDI-MS: m / z (\%): 501.2270 (100), $461.1961\left(83,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}^{+}: 461.1966$), 393.2145 (53), 353.1842 (75).

Methyl 5-Amino-4-\{2-[(cyclohexylmethyl)amino]ethyl\}-1-(N,N-
 dimethylsulfamoyl)-2-[(thien-2-ylmethyl)amino]- \mathbf{H}-benzimidazole-6carboxylate (15a):

According to GP 8, starting from 14a ($300 \mathrm{mg}, 0.66 \mathrm{mmol}$) and cyclohexanecarbaldehyde ($83 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$ over $4 \AA$ molecular sieves (ca. 400 mg), then with $\mathrm{NaBH}(\mathrm{OAc})_{3}(562 \mathrm{mg}, 2.64 \mathrm{mmol})$. Workup with aq. $2 \mathrm{~m} \mathrm{NH}_{3}$ solution (30 mL) and EtOAc (3 x 30 mL), $\mathrm{FC}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 98:2 to 93:7), and lyophilization from $t \mathrm{BuOH}$ yielded 15a ($190 \mathrm{mg}, 52 \%$) as a yellow oil.
$R_{\mathrm{f}}=0.38\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 25 \%\right.$ aq. $\mathrm{NH}_{3} 95: 4: 1$, UV 254 nm$) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91$ ($\mathrm{qd}, J=12.1,2.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)$), $1.14-1.28$ (m, $\left.3 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}\right)\right), 1.52-1.54$ (m, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)$), 1.62-1.80 (m, $5 \mathrm{H} ;$ $\mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(2^{\prime \prime}-6^{\prime \prime}\right)$), 2.57 (d, $J=6.7 \mathrm{~Hz} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)$), 2.88 ($\mathrm{s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}$), $3.00(\mathrm{t}, J=$ $\left.6.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.15\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.87(\mathrm{~s}, 3 \mathrm{H}$; OMe), 4.93 (d, $\left.J=5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 6.63$ (t, $\left.J=5.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}-\mathrm{C}(2)\right)$, 6.98 (dd, $J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)$), 7.09 (br. d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$; H-C(3')), 7.24 (dd, $\left.J=5.1,1.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right), 7.99 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.59\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right), 25.95\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 5^{\prime \prime}\right)\right), 26.54$ (C(4"), 31.35 (2 C; C(2",6")), 37.47 (C(1")), 38.77 (2 C; NMe_{2}), 41.91 $\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 48.69\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $51.50(\mathrm{OMe})$, $56.22\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 104.75$ ($\mathrm{C}(6)$), 112.42 ($2 \mathrm{C} ; \mathrm{C}(4,7)$), 122.91 ($\mathrm{C}(7 \mathrm{a})$), 125.42 ($\mathrm{C}\left(5^{\prime}\right)$), 126.42 and 126.79 (2 C; C(3', 4')), 140.52 (C(2')), 146.60 (C(3a)), 148.01 (C(5)), 154.02 (C(2)), 169.06 ppm (C=O); IR (ATR): $\tilde{v}=3406$ (w), 2922 (w), 2850 (w), 1685 (w), 1574 (s), 1504 (w), 1426 (m), 1392 (m), 1371 (m), 1272 (m), 1202 (s), 1153 (s), 1100 (m), 1034 (w), 964 (m), 892 (w), 852 (w), 793 (m), 734 (s), 702 (s), $618 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-ESI-MS: $m / z(\%): 550.2350$ (30), $549.2322\left(100,[M+\mathrm{H}]^{+}\right.$, calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}$: 549.2312).

Methyl 5-Amino-4-\{2-[(cyclohexylmethyl)amino]ethyl\}-1-(N,N-dimethyl-sulfamoyl)-2-\{[2-(morpholin-4-yl)ethyl]amino\}-1H-benzimidazole-6-carboxylate (15b):

According to GP 8, starting from 14b ($105 \mathrm{mg}, 0.22 \mathrm{mmol}$) and cyclohexanecarbaldehyde ($28 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ over $4 \AA$ molecular sieves (ca. 200 mg), then with $\mathrm{NaBH}(\mathrm{OAc})_{3}(190 \mathrm{mg}, 0.89 \mathrm{mmol})$. Workup with aq. $2 \mathrm{M} \quad \mathrm{NH}_{3}$ solution (10 mL) and EtOAc (3 x 10 mL), MPLC $\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$ 100:0:0 to 80:19.4:0.6 within 60 min), and lyophilization from $t \mathrm{BuOH}$ yielded crude $\mathbf{1 5 b}$ (58 mg , ca. 46%; purity: ca. 85%) as a yellow oil. $R_{\mathrm{f}}=0.40 \quad\left(\mathrm{SiO}_{2} ; \quad \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right.$ 90:9.9:0.1, UV 254 nm$) ; \quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87$ (qd, $J=12.0,2.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(2^{\prime}, 6^{\prime}\right)$), $1.08-1.30$ (m, $3 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime}, 4^{\prime}, 5^{\prime}\right)$), $1.36-1.54\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$, $1.60-1.72$ (m, 5 H ; $\mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(2^{\prime}-6^{\prime}\right)$), 2.46-2.50 (m, $2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)$), 2.50 (br. t, $J=4.2 \mathrm{~Hz}, 4 \mathrm{H}$; $\left.\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}\right), 2.63\left(\mathrm{t}, ~ J=6.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 2.86-2.93(\mathrm{~m}, 2 \mathrm{H}$; $\left.\mathrm{CH}_{2}-\mathrm{C}(4)\right), 2.90\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 3.02\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 3.62(\mathrm{q}$, $\left.J=5.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH} \mathrm{H}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 3.71$ (br. t, $\left.J=4.6 \mathrm{~Hz}, 4 \mathrm{H} ; \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.84(\mathrm{~s}, 3 \mathrm{H}$; OMe), 6.89 (t, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}-\mathrm{C}(2)), 7.95 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7))$; IR (ATR): $\tilde{v}=3410(\mathrm{w}), 3362(\mathrm{w}), 2921(\mathrm{w}), 2850(\mathrm{w}), 1684(\mathrm{w}), 1585(\mathrm{~s}), 1476(\mathrm{w})$, 1455 (w), 1429 (m), 1379 (w), 1348 (w), 1274 (m), 1203 (m), 1157 (m), 1117 (m), 1055 (w), $964(\mathrm{w}), 912(\mathrm{w}), 793(\mathrm{w}), 717 \mathrm{~cm}^{-1}(\mathrm{~m}) ; \quad$ HR-ESI-MS: m/z (\%): 567.3143 (28), $566.3115\left(100,[M+\mathrm{H}]+\right.$, calcd for $\left.\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{5} \mathrm{~S}^{+}: 566.3119\right)$.

Methyl 5-Amino-4-\{2-[(cyclohexylmethyl)amino]ethyl\}-1-(N,N-dimethyl-sulfamoyl)-2-[(2-phenylethyl)amino]-1 H -benzimidazole-6-carboxylate (15c):

According to GP 8, starting from 14c ($314 \mathrm{mg}, 0.68 \mathrm{mmol}$) and cyclohexanecarbaldehyde ($84 \mu \mathrm{~L}, 0.68 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9.0 \mathrm{~mL})$ over $4 \AA$ molecular sieves (ca. 300 mg), then with $\mathrm{NaBH}(\mathrm{OAc})_{3}(576 \mathrm{mg}, 2.70 \mathrm{mmol})$. Workup with aq. $2 \mathrm{~m} \mathrm{NH}_{3}$ solution (30 mL) and EtOAc (3 x 30 mL), $\mathrm{FC}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$ 98:2 to 95:5), and lyophilization from $t \mathrm{BuOH}$ yielded $\mathbf{1 5 c}(273 \mathrm{mg}, 72 \%)$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.87$ ($\mathrm{qd}, J=15.9,3.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(2^{\prime \prime}, 6\right.$ " $)$), 1.10-1.30 (m, $3 \mathrm{H} ; \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(3^{\prime \prime}, 4 ", 55^{\prime \prime}\right)$), 1.36-1.51 (m, $\left.1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right)$, 1.62-1.77 (m, $\left.5 \mathrm{H} ; \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(2^{\prime \prime}-6^{\prime \prime}\right)\right), 2.49\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 2.74$ (s, $6 \mathrm{H} ; \mathrm{NMe}_{2}$), $2.90\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $2.98-3.07\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right.$, $\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)$), $3.82\left(\mathrm{td}, J=6.8,5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right.$), 3.84 (s, 3 H ; OMe), 6.20-6.50 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), 6.27 (t, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 7.20-7.34 (m, $5 \mathrm{H} ;$ $\mathrm{C}_{6} \mathrm{H}_{5}$), $7.93 \mathrm{ppm}\left(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)\right.$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.32$ ($\mathrm{CH}_{2}-\mathrm{C}(4)$), 26.52 ($2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 5{ }^{\prime \prime}\right)$), 26.90 ($\mathrm{C}\left(4^{\prime}\right)$), 31.70 ($2 \mathrm{C} ; \mathrm{C}\left(2^{\prime \prime}, 6^{\prime \prime}\right)$), 35.47 $\left(\mathrm{C}\left(1^{\prime \prime}\right)\right), 38.33\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 38.83\left(2 \mathrm{C} ; \mathrm{NMe}_{2}\right), 44.46\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 49.33$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $51.63(\mathrm{OMe}), 57.04\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right)$, $104.42(\mathrm{C}(6)), 112.03(\mathrm{C}(4))$, 113.42 (C(4)), 122.86 ($\mathrm{C}(7)$), 126.66 ($\left.\mathrm{C}\left(4^{\prime}\right)\right), 128.69$ (2 C; C(2', $\left.6^{\prime}\right)$), 128.80 (2 C; C(3',5')), 138.65 ($\left(\mathrm{C}^{\prime}\right)$), 146.92 (C(3a)), 148.06 (C(5)), $154.30(\mathrm{C}(2)), 169.11 \mathrm{ppm}$ (C=O); IR (ATR): $\tilde{v}=3406$ (w), 2922 (w), 1685 (w), 1576 (s), 1427 (m), 1365 (w), 1273 (m), 1204 (s), 1153 (s), 1104 (w), 964 (m), 793 (w), $715 \mathrm{~cm}^{-1}$ (s); HR-MALDI-MS: m / z (\%): 558.2931 (31), 557.2902 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}^{+}: 557.2904$), 449.2782 (52), 324.1574 (45).

Methyl 5-Amino-4-[2-(benzylamino)ethyl]-1-(N,N-dimethylsulfamoyl)-2-[(2-phenylethyl)amino]- 1 H -benzimidazole-6-carboxylate (16a):

According to GP 8, starting from 14c ($68 \mathrm{mg}, 0.15 \mathrm{mmol}$), benzaldehyde (16 mg , $0.15 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ over $4 \AA$ molecular sieves (ca. 100 mg), then with and $\mathrm{NaBH}(\mathrm{OAc})_{3}(90 \mathrm{mg}, 0.43 \mathrm{mmol})$. Workup with 2 m aq. NH_{3} solution (10 mL) and EtOAc (3 x 10 mL), $\mathrm{FC}\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N} 97: 2: 1\right.$), and lyophilization from $t \mathrm{BuOH}$ yielded $16 \mathrm{a}(48 \mathrm{mg}, 59 \%)$ as a white solid $R_{\mathrm{f}}=0.20\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right.$ 97:2:1, UV 254 nm$)$; m.p. $107-109{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=2.75\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 2.97-3.02(\mathrm{~m}, 4 \mathrm{H}$; $\mathrm{CH}_{2}-\mathrm{C}(4)$ and $\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)$), 3.10 (br. $\mathrm{t}, J \approx 6.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$), 3.79 (td, $J=6.9,5.6 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)$), $3.76-3.82$ (m, $2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)$), 3.85 ($\mathrm{s}, 3 \mathrm{H}$; OMe), 6.28 (t, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}-\mathrm{C}(2))$, $7.21-7.35\left(\mathrm{~m}, 10 \mathrm{H} ; 2 \mathrm{x} \mathrm{C}_{6} \mathrm{H}_{5}\right.$), $7.95 \mathrm{ppm}(\mathrm{s}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=26.09\left(\mathrm{CH}_{2}-\mathrm{C}(4)\right)$, $35.18\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), \quad 38.57 \quad\left(2 \mathrm{C} ; \quad \mathrm{NMe}_{2}\right), \quad 44.19 \quad\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), \quad 48.21$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right), 51.42(\mathrm{OMe}), 53.90\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right)$, $104.37(\mathrm{C}(6)), 112.02(\mathrm{C}(7))$, $112.90(\mathrm{C}(4)), 122.85(\mathrm{C}(7 \mathrm{a})), 126.57$ and $126.84\left(2 \mathrm{C} ; \mathrm{C}\left(4^{\prime}, 4^{\prime \prime}\right)\right), 127.99,128.32$, 128.62, and 128.72 ($8 \mathrm{C} ; \mathrm{C}\left(2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}, 2^{\prime \prime}, 3^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}\right)$), 138.59 and 140.28 (2 C ; $\mathrm{C}\left(1^{\prime}, 1^{\prime \prime}\right)$), 146.97 (C(3a)), 147.81 (C(5)), 154.29 (C(2)), $169.09 \mathrm{ppm}(\mathrm{C}=\mathrm{O})$; IR (ATR): $\tilde{v}=3443$ (w), 3406 (w), 3338 (w), 3028 (w), 2951 (w), 1681 (w), 1583 (s), 1423 (m), 1373 (m), 1264 (m), 1205 (s$), 1155$ (s$), 1072$ (m), 959 (m), 793 (w), 738 (s), $696 \mathrm{~cm}^{-1}(\mathrm{~s})$; HR-MALDI-MS: $m / z(\%): 552.2461$ (34), 551.2432 (100, $[M+\mathrm{H}]^{+}$, calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}^{+}: 551.2435$), 444.2377 (100), 324.1574 (56).

Methyl 5-Amino-4-\{2-[(cyclopentylmethyl)amino]ethyl\}-1-(N, N-dimethyl-sulfamoyl)-2-[(2-phenylethyl)amino]-1H-benzimidazole-6-carboxylate (16b):

According to GP 8, starting from 14c ($62 \mathrm{mg}, 0.14 \mathrm{mmol}$), cyclopentanecarbaldehyde ($13 \mathrm{mg}, 0.13 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ over $4 \AA$ molecular sieves (ca. 100 mg), then with and $\mathrm{NaBH}(\mathrm{OAc})_{3}(110 \mathrm{mg}, 0.52 \mathrm{mmol})$. Workup with 2 m aq. NH_{3} solution (10 mL) and EtOAc (3 x 10 mL), $\mathrm{FC}\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}$ 97:2:1), and lyophilization from $t \mathrm{BuOH}$ yielded $\mathbf{1 6 b}$ (29 mg , 40%) as a colorless oil.
$R_{\mathrm{f}}=0.17\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N}\right.$ 97:2:1, UV 254 nm); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=1.08-1.19\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}_{\mathrm{a}}-\mathrm{C}\left(2^{\prime \prime}, 5^{\prime \prime}\right)\right), 1.46-1.62\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}_{2} \mathrm{C}\left(3^{\prime \prime}, 44^{\prime \prime}\right)\right)$, $1.69-1.80$ (m, $2 \mathrm{H} ; \mathrm{H}_{\mathrm{b}}-\mathrm{C}\left(2^{\prime \prime}, 5{ }^{\prime \prime}\right)$), 1.99 (sept., $J=7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)$), 2.59 (d, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 2.74\left(\mathrm{~s}, 6 \mathrm{H} ; \mathrm{NMe}_{2}\right), 2.92(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H} ;$ $\mathrm{CH}_{2}-\mathrm{C}(4)$), 2.98-3.07 (m, $4 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)$ and $\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)$), 3.81 (td, $J=6.9$, $\left.5.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right), 3.84(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OMe}), 6.27(\mathrm{t}, ~ J=5.5 \mathrm{~Hz}, 1 \mathrm{H} ;$ NH-C(2)), 6.30-6.55 (br. s, $2 \mathrm{H} ; \mathrm{NH}_{2}$), 7.19-7.34 (m, $5 \mathrm{H} ; \mathrm{C}_{6} \mathrm{H}_{5}$), 7.93 ppm (s, $1 \mathrm{H} ; \mathrm{H}-\mathrm{C}(7)$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=25.38\left(2 \mathrm{C} ; \mathrm{C}\left(3^{\prime \prime}, 4{ }^{\prime \prime}\right)\right.$), 26.38 ($\left.\mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 30.95 ($2 \mathrm{C} ; \mathrm{C}\left(2^{\prime \prime}, 55^{\prime \prime}\right)$), 35.29 ($\mathrm{C}\left(11^{\prime \prime}\right)$), 38.66 ($2 \mathrm{C} ; \mathrm{NMe}_{2}$), 40.23 $\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime}\right)\right), 44.29\left(\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(2)\right)$, $49.14\left(\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}(4)\right)$, 51.45 (OMe), 55.80 $\left(\mathrm{CH}_{2}-\mathrm{C}\left(1^{\prime \prime}\right)\right), 104.25$ (C(6)), 111.86 (C(7)), 113.27 (C(4)), 122.69 (C(7a)), 126.48 ($\left.\mathrm{C}\left(4^{\prime}\right)\right), 128.51$ and 128.63 (4 C; $\mathrm{C}\left(2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}\right)$), 138.49 ($\left.\left(1^{\prime}\right)\right)$, 146.76 ($\mathrm{C}(3 \mathrm{a})$), 147.91 (C(5)), 154.12 (C(2)), $168.94 \mathrm{ppm}(\mathrm{C}=\mathrm{O}) ; \quad$ IR (ATR): $\tilde{v}=3405(\mathrm{w})$, 2947 (w), 2864 (w), 1684 (w), 1574 (s), 1426 (m), 1365 (w), 1272 (m), 1203 (s), 1151 (s), 1107 (w), 962 (m), 792 (w), $714 \mathrm{~cm}^{-1}(\mathrm{~m})$; HR-MALDI-MS: $m / z(\%)$: 544.2781 (34), 543.2746 (100, $[M+]^{+}$, calcd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{~S}^{+}$: 543.2754), 435.2627 (78), 324.1583 (75).

12 References

[1] T. Ritschel, P. C. Kohler, A. Heine, F. Diederich, G. Klebe, ChemMedChem 2009, 4, 2012-2023. How to Replace the Residual Solvation Shell of Polar Active Site Residues to Achieve Nanomolar Inhibition of tRNA-Guanine Transglycosylase.
[2] L. J. Barandun, F. Immekus, P. C. Kohler, S. Tonazzi, B. Wagner, S. Wendelspiess, T. Ritschel, A. Heine, M. Kansy, G. Klebe, F. Diederich, Chem. Eur. J. 2012, 18, 9246-9257. From lin-Benzoguanines to linBenzoyhpoxanthines as Ligands for Z. mobilis TGT: Replacement of ProteinLigand Hydrogen Bonding by Import of Water Clusters.
[3] S. R. Hörtner, T. Ritschel, B. Stengl, C. Kramer, W. B. Schweizer, B. Wagner, M. Kansy, G. Klebe, F. Diederich, Angew. Chem. Int. Ed. 2007, 46, 8266-8269; Angew. Chem. 2007, 119, 8414-8417. Potent Inhibitors of tRNA-Guanine Transglycosylase, an Enzyme Linked to the Pathogenicity of the Shigella Bacterium: Charge-Assisted Hydrogen Bonding.
[4] P. C. Kohler, T. Ritschel, W. B. Schweizer, G. Klebe, F. Diederich, Chem. Eur. J. 2009, 15, 10809-10817. High-Affinity Inhibitors of tRNA-Guanine Transgycosylase Replacing the Function of Structural Water Cluster.

13 NMR Spectra

カャIて92	az！｜equads iz
¢8099	az！paunnob OZ
Јદ	sneprn 61
6．688I－	イournbay」 75әм07 81
¢＇9ヶ巾 T	LTPIM IR．nכads $\angle T$
／／＇şI	
£て：It： $60 \perp 0 \varepsilon-{ }^{\text {co－6002 }}$	
$6660{ }^{\circ} \mathrm{z}$	aun uou
！	
000\％ 6	
0000 ＇	Nejed uодехерәу ZI
S8SIt	
09EST	suejs fo dequinn 0 I
वI	
St 5 d6z	əuuanbos əs｜nd
0，00E	әпъедәduә」
ह1כอ	дUалоS
pəds	
7001	лимо
Hque	
1วyn⿺𠃑＇tWNXn	4610
ชWIN 98 วદI ZHW SZT	ұиวшшоэ
z／dy｜EzEZSp	च\य
onjen	גכ¢0uesed

udd 0

12 Relaxation
Delay $\quad 3.0000$ $\begin{array}{lll}\text { Scans } \\ 11 & \text { Receiver Gain } & 128\end{array}$ $\begin{array}{ll}9 \text { Experiment } & 1 \mathrm{D} \\ 10 \text { Nuntber of } & 12000\end{array}$ 8 Pulse Sequence zgpg45 $\begin{array}{lll}6 & \text { Solvent } & \text { DMSO } \\ 7 & \text { Temperature } & 298.3\end{array}$ $\begin{array}{lll}4 & \text { Owner } & \text { sV } \\ 5 & \text { Spectrometer } & \text { spect }\end{array}$ 3 Origin
 $9 \downarrow 50 \mathrm{H}$ ขํ 1 วก⿺𠃊

カカIて92	วzis ןupads zて
カt68L	azis paunlozy iz
วยโ	snopnn 02
\＆＇ャ8で－	Nouanbay 7 ¢ам 0761
0 －$\dagger 69 / \varepsilon$	
06．05T	র̇⿰u®nbコ」
6T：SS：ちT」TT－OT－0TOZ	
00：をZ： $2 T \perp L 0$－0T－0T0Z	
0001 ＇z	aull uolys！n
$0006 \cdot 6$	
000\％ 0	кepar uonpexpry zi
	ule9 גәләэәу II
0000を	suess to azqunn 01
at	
Stธิd6z	әวuənbas əs｜nd
ع＇66乙	әппұеədual
OSWC	диәл시 9
pads	1apou0ıpəas ¢
＾s	леимо
Hque uldso！a doyng	ци！
ZWN JET ZHW OST －y：ydo z8I－9c7 чоиәрә！／unpuexeg	ұихимоэ
OZS＊	ว｜끼 1
ən！en	

วєะ	snəpnn 81
	Nuanbat
26.051	
	$\begin{gathered} \text { эұеа } \\ \text { uо!̣еয!!pow } 91 \end{gathered}$
00:9Z:ZTLIT-0T-0T0Z	эеа
0002'6 47P! M	
	<elag
$000{ }^{\prime} 0$	นoplexploy t
82 I	u\|e9 dentejay it
	sues
000s!	fo sequin 0 ¢
वI	үuæu!rax 6
¢'8	
oswa	ұшелоS
peds	
\wedge s	.əимо
Hque undsolg -rx> .ag	บ\|6,
\#WN JET ZHW OST	
	диәшноว
$\angle \mathrm{LSOH}$	$\mathrm{OH}_{\mathrm{H}} \mathrm{I}$
әпрел	

วยะ	snəpnn 81
	Nuanbors
19000	1etau0ułวəds $\angle 1$
	әде口 นо！ีeכ！！！Pow 91
9s：0t：6018T－80－0t02	ә¢口
00：5ヶ：8018t－80－0t0z	
0001.6	ЧIPIM $\operatorname{\text {asind}¢1}$
	Ne｜pa
0000 ＇乙	uolpexe｜ry ZI
\＆02	
	sueas
00ST	fo sequin 0 ¢
वI	quaunadx 6
0ε ¢d6z	ә）uenbes 2sind $^{\text {d }}$
0.862	
£｜ว๐ว	диелоS 9
poeds	
лииวоㅣㅣ	ләимо t
IT uerop	
91^{-}Eid aldues	ұихแио 2
иенор－80－दT－ti	2｜l 1
эп｜en	

วદ！	snəjonn 81
19.001	
	әер
80 Tヶ： 6018 Cl －80－0T0Z	uontepuppow 9 I
	әер
人plod	
0000 ＇ 2	uoplexe｜ay ZI
	suejs
00st	fo sequin 0 O
OI	
0 06dibz auuanbas as｜nd	
0.862 ขıņeratur	
pods lezauoupords	
Hque uidso！a dexn土（ ubluo	
乙T uefop	
A／2do／\＆lวロJ y $\forall \circ$	
$\angle{ }^{-}$Gld 引dues	ұигимоэ 2
upuop－80－くI－てI	캑 I
әп｜en dərumesed	

${ }_{0}^{0}$	

วє！	snəpnn 81
	Nuanters
19．00\％	
	әฺロ
て0：てを：601ヵて－80－0102	Uonterypow 91
	әер
00：$¢ 0:$ TZLEZ－80－0t0	
0000 ＇ 2	u0！
غ0z ueg ranjojoy it	
	suejs
00¢1	fo dequinn 0 I
वr	
0 06dd6z əวuənbes วsind 8	
Hque uidso！g dexnıg u｜buo e	
＜u®边	
＾／7do／\＆¢	
$61^{-31 / d}$ aldues	ұиәแบоэ 2
иш๐ор－80－६̌－L	캎 I
anjen	ләpousted

『	

วย	snəjnก 81
	Nounbout
19000	
81：9z：01LLz－80－0002	ฆеа чоретирон 9
	эеа
00：＜ $5: 81192-80-0102$	
0008 L	
0000＇z	$\begin{gathered} \text { रepag } \\ \text { uopexejey } \end{gathered}$
6622	
	suess
0055	fo sequinn 0 ¢
ar	นuæuradx 6
$0 ¢$ ¢d6z əzuenbes 2 and 8	
T＇862	ә．пŋerduә」 $/$
غાว๐ว	тиәліоя 9
peds	土ezaworzods 5
лииวо｜	даимо
Hqu9 uldsora dexn⿺g	щбио ع
9\％иенор	
02＇3Id aldues	ұихшை๐ г
иенор－80－92－9р	əpH I
эําел	гәpwered

ว¢โ	snepun 81
	Kuanboul
19．00］	
	әұе口
0ヶ：9Z：ヤ1－E0－を0－600	иопреп！．pow 91
	әер
00：00：てT」E0－を0－600て	uolusin bov St
0001 ＇6	पIPIM วsind ε I
	Ne｜eg
$0000 \cdot$＇	uolpexejoy ZI
£0Z	u！eg גәләәәу II
	suess
ャZ．0r	fo sequinn 0 0t
वI	fuaumadx 6
$0 ¢ \chi^{\text {d }}$ ¢ 2	әuınbəs asind 8
$0 \cdot 008$	
غ｜ว૦ว	диелоS 9
peds	
ภuиวo｜	JəLMO b
	น｜நெ๐ \＆
92 ә씸	
E69－E69－1d əpdues	ұиәแ上о
әчор－દ0－غ0－9z	21ㅛ I
วก｜e入	

วє	snapnn 81
	Nouenbay
19\％001	
	ฆฺロ
9S：17：60160－60－0102	บоี้อบ！
	æе口
00：てを：ヶて180－60－0102	uopasinbov 51
0001\％6 पIPIM כsind ε ¢	
	Ne｜eg
0000 z uoltexelpy 21	
EOZ uleg ranpooy it	
suess	
0051	go Jequinn 0 т
OI tuauradx 6	
$0 ¢ 6 \mathrm{~d} 6 \mathrm{z}$ әวuenbes $\operatorname{\text {asind}}$	
غ｜วロכ 孔ueñS	
pods •əұəu01	
小uиวo｜	
6I uertop	
＾／スdo／घIJロכ ४	
ヶて $\chi^{\text {Ind }}$ चdures	ұиәимоэ 乙
иенор－60－80－61	캐⿺I I
วก⿺𠃊八	нәдวuesed

$9 ¢ 5 ¢ 9$	ezS｜enozds it
00092	əZIS Pəunbov 02
ว¢T	snepun 61
0.00002	ЧIPIM Ienzoods $\angle 1$
	Nouenbort
05＇SL	
9¢：$¢ ¢: \downarrow$ ¢	әұea uonexypow SI
ャ0：くャ：¢โ	əృeq uousinnbov $\dagger \mathrm{T}$
$000 \varepsilon^{\prime}$ I	วun uounsinbov \＆I
$0000 \cdot$	
0000＇	kepra uoplexepray it
9ε	
092	sueas to requnn 6
वT	fururadx 8
Indzs	20uenbes 2sind $^{\text {c }}$
0.62	
हIJJJ	диәл오 5
ム．nวıuu	
ueuen	บإ¢0 E
ョЛษヨรs	ұихแบоэ ？
\＆โフ－869－く69－れ	캗 1
anjen	deapuesed

CAR CDCI3 /opt/v dorlan 10

$\mathcal{K}_{168.43}^{169.04}$
$\int_{\int_{-147.02}^{154.72}}^{154}$
$f_{-147.02}^{132}$
 - 13.32 .30 ${ }_{5}^{-126.80}$ 125.11
-123.16 $\mathrm{T}_{122.82}^{123.16}$

ว τ	snapun $\angle 1$
19\％00t	noumbert
0S：9t：STL6T－E0－6002	27ea uonesuppow SI
00：8c：ちT16T－を0－600Z	əzeg uolusinbov ti
て¢9¢＇т	2un uonssinbov \＆i
0001%	
$0000{ }^{\circ} \mathrm{Z}$	人epar uolle xe｜py II
\＆0Z	
ャて๐t	suess fo dequinn 6
वт	ұuæumadx 8
0ε ¢dfz	2ouenbes asind L
0．00E	әпมerodurı 9
Elכa	HUENOS 5
poods	
．wu\％o	Римо E
Hqup undsorg－eyng	
키에ํ－を0－6I－85	깨 I
an｜en	лerauesed

9 csc 9	aziS｜elzoads iz
00092	azis paunbov 02
Ј¢ז	snipunn 61
$0 \cdot 00002$	ЧІPIM｜expord $\angle 1$
	Nuこnbat」
$6 \varepsilon^{\prime} S \angle$	
20：0¢：5TLL0－50－600z	¥ea uolpeyppow SI
se：st：601zD－b0－600z	әrea uolysinbov tr
000\＆＇	วu！uousinnov ε ¢
$0000 \cdot 0$	YIPIM $\operatorname{\text {Fsind}} \mathrm{ZI}$
0000＇t	
0ε	
ゅ9	sueas jo araunn 6
वT	fuæu！edx ${ }^{\text {a }}$
Indzs	әวuenbes ${ }^{\text {asjnd }}$ L
$0 \cdot 62$	
EIJOJ	\＃UəNOS 5
ムпnızu	
－¢！uen	u｜buO E
	диәแио ？
ह 5 －50＜－50L－9d	ग习ㅃ
ən｜en	Jezouesed

00016	
	Alpag
0000 'z	Loplexepay St
£02.	suevs
00SI	suejs
वI	
$0 \varepsilon^{5 d 6 z}$	əuuenbes วsind II
$0 \cdot 862$	จ.ņeradua 0 01
£\|ว๐ว	диелоS
	dounn
pods	
	ә૫S
щบว์	димо
Hqu9 uldsola deynta	u\|6u\%
$6{ }^{6}$ иериор	
$\wedge / 2 d 0 / \varepsilon 150 J$ y	
İ II Id aldues	дихшио
иенор-60-£z-6t	깯
P!	
/sıasn/: 2	aumen 릴 erea
әп\|ел	нәәue.ed

-128.72
$\mathcal{O}_{128.62}$
-128.32
-127.99

-126.84
-126.57

-169.09

	Parameter	Value
1	Title	pk-710-710-c13
2	Comment	13 C OBSERVE
3	Origin	Varian
4	Spectrometer	mercury
5	Author	
6	Solvent	CDCl3
7	Temperature	29.0
8	Pulse Sequence	s2pul
9	Experiment	1 D
10	Number of Scans	128
11	Receiver Gain	36
12	Relaxation Dclay	1.0000
13	Pulse Width	0.0000
14	Acquisition Time	1.3000
15	Acquisition Date	$2009-05-07 T 08: 19: 18$
16	Modification Date	$2009-05-07 T 08: 43: 24$
17	Spectrometer	75.39
Frequency		
18	Spectral Width	20000.0
19	Lowest Frequency	-1724.8
20	Nucleus	$13 C$
21	Acquired Size	26000
22	Spectral Size	65536

89Lてを	วz！¢ ןupads てz
00091	วz！
Hi	snəpun 02
L＇Or9－	$\begin{aligned} & \text { KJuэnboxy } \\ & \text { 750м07 } 61 \end{aligned}$
＋660S	
	রjuanbaus
zて＇00¢	әңе
zع：0t：ZT160－to－6002	
60：6t：TT $160-$ 0－6002	
$9 \angle E I$＇ε	วulı uo！ys！רbว \downarrow tI
0000\％	
	人elpa
$0000 \cdot 0$	uontexepry ZT
02	
91	suejs fo dequinn 0 T
OT	ұиæuฒədxヨ 6
indzs	әวuəntas วs｜nd 8
0.62	
घ100	дUanos 9
人nnدam	
ueup	ᄂ！！
ヨ＾४ヨsgo hi aybonvis	диәимоэ г
LOL－90L－1d	गํ 1
әп¢ィ	

	Parameter	Value
1	Title	pk-706-707-c13
2	Comment	$13 C$ OBSERVE
3	Origin	Varian
4	Spectrometer	mercury
5	Author	
6	Solvent	CDCI3
7	Temperature	29.0
8	Pulse Sequence	s2pul
9	Experiment	1 D
10	Number of Scans	484
11	Receiver Gain	36
12	Relaxation Delay	1.0000
13	Pulse Width	0.0000
14	Acquisition Time	1.3000
15	Acquisition Date	$2009-04-09 T 11: 52: 22$
16	Modification Date	$2009-04-09 T 12: 49: 24$
17	Spectrometer	75.50
Frequency		
18	Spectral Width	20000.0
19	Lowest Frequency	-1712.4
20	Nucleus	$13 C$
21	Acquircd Sizc	26000
22	Spectral Size	65536

