Supplementary Figure 1: Sequence alignment of CTNNBL1 from diverse animal species. Numbering and secondary structures for human CTNNBL1 are shown on top of the alignment. NAM, NTD, ARM, CTD stand for the N-terminal anchoring motif, N-terminal domain, ARM domain, and C-terminal domain respectively. Residues are color-coded based on properties. The highly conserved residues (80% or more) are highlighted by background coloring.

		ARM5 H3	ARM6 H1	ARM6 H2			ARM6 H3		
		360	370	380	390		400	410	
Human	352	SALKVLDHAMIGPEG				K K V G T T	K EH		41
Gorilla	352	P E	DNCHKFVDI	RTIFP	K	K K V	EKEHEEHV		411
Chimpanzee	35	GPE	DNCHKFVD	RTIFP	K	K K V G T	ekeheehv		411
Orangutan	352	1 GPE	D N	K	K	K K V G T	Keheehvo	C S 1	411
Macaque	352	SALKVLDHAMIGPE	DNCHKFVDI	RTIFPL	PR ${ }^{\text {P }}$ IK K	K	EKEHEEHVC	CS IL	411
Marm	352	ALKVLDHAMIGPEG	DNCHKFVD	RTIFPLFM	K	K K V	EKEHEEHVC	S 1	411
Cow	352	GPE	DNCHKFVDI	RTIFP	K	K K V G T	ekeheehv	C S 1	411
GuineaPig	352	KVLDHAMIGPEG	TDNCHKFVDI	R	RKIK	KKVGTTE	EKEHEEHVC	C S 1	411
Dog	354	SALKVLDHAMIGPEG	TDNCHKFVDILGL	RTIFPL	K	K KVG T	EKEHEEHVC	C S 1	413
Horse	353	SALKVLDHAMIGPEG	TDNCHKFVDI	RTIFPL	K	K	EKEHEE	S	412
Elephant	354	SALKVLDHAMIGPEG	TDNCHKFVDI	RTIFPL	K	K	ekeheehv	CS 1	413
Rat	352	SALKVLDHAMIGPEG	ADNCHKFVDILG	RTIFPL	RKIK	K K V G T	EKEHEEHVC	c	11
ous	352	SALKVLDHAMIGPEG	TDNCHKFVDI	RTIFPL	PRK I K	K KVGT	EKEHEEHVC	C S 1	11
Opossum	357	SALKVLDHAMIGPEG	TDNCHKFVDI	RTIFPL	PKK I K	KKVGTTE	EKEHEEHV	CS IL	416
Chick	353	KVLDHAMIGPEG	TDNCHKFVDI	RTIFPL		K KVGT	EKEHEEHVC	CS 1	412
Coelacanth	350	SALKVLDHAMIGPEG	TDNCHKFVDI	RTIFPL	K	KKAGV	EKEHEEHVC	CS	09
Bat	352	SALKVLDHAMIGPEG	THCCRKFVDILGL	RTIFPL	K	KKVGTTE	EKEQEEHVC	A	411
Zebrafis	35	SALKVLDYGMIGPEG	SDNCHKFVDI	RTIFPL		KKVGISD	DKQHEEHV		411
Toad	344	SALRVLDHAMIGPE	DNCHKFVDI	R TIFPL		KKTGVS	EKEHEEHVC		03
Salmon	350	SALRVLDHGMIGPEG	SDNCHKFVDI	P L		RKAGAAD	dKEHEEHVC	C	409
Tick	354	GALKVLDFATSNMEG	TDNCNKFVDI	RTVFPLFMQ	K	KKKVASP	PEEHEEHVC	C	413
Mosquito	363	GSLKVLDHAVSGPDG	RDNCNKFVDI	RTIFPLFMK		KKRLLSt	TDEHEEHVV		422
FruitFly	376	KVLDHAMAGQDG	RDNCNKFVEILG	PL	NK	KQRLISA	ADEHEEHV		435
Beetle	356	GSLKVLDYAMSGPHG	KDNCNKFVDILG	P	KKNR	RKKVLS	TEEHEEHVT	TS	15
Placozoa	357	GAIKTLTYVLSNYNG	pdCAVKFIELFg	RSLFPL	KMF	KKLTNE	ESEHIEHIC	CSIM	415
Bee	380	GSLKVLDHAMNGPDG	KDNCSKFVDILG	RTIFPL	KNR	RKRMLTA	AEEHEEHVI		39
Flea	356	GALKVLNHALSGEAG	KDNCTKFVDILG	RTIFPLFM	L K	KRKGM	AEEYEEHIV		415
Ant	381	GSLKVLDYAMNGPDG	KDNCSKFVDILG	RTIFPLFMK	TNNR	RKKMLTA	AEEHEEHVV	vs I	440
SilkWorm	354	GSLKVLDHALVGPDG	RDNCNKFVDILGL	RTVFPL		RKRLLTV	VDQHEEHVV	vs I	11
	355	GSLKVLDHALAGPDG	KDNCNKFVDILG	RTVFPLFM		RKRILTL	LDQHEEHVV		2
Lice	322	GSLKVLDHAMSGPEG	KDNCNKFVDILGL	RTIFPLFM	KNR	RKKVITV	veehemhvi	LS IV	381
Worm	335	KVLNHATSGDEG	IENCNKLVEMLGL	RTIFPLFMR		KRKDT ${ }^{\text {c }}$	deheehvc	ctil	394

Figure S2: a) Preparation of the full-length CTNNBL1 and CTNNBL1 ${ }^{\text {SF }}$ protein samples. Lane 1: overexpressed full-length CTNNBL1 in the supernatant; lane 2: full-length CTNNBL1 after purification by NTA resin; lane 3: full-length CTNNBL1 after the fusion tag was cleaved by HRV 3C protease; lane 4: fulllength CTNNBL1 after the fusion tag was separated from the target protein; lane 5: pure full-length CTNNBL1 after purification by SP-Seharose chromatography; lane 6: pure CTNNBL1 ${ }^{\mathrm{SF}}$ after purification by SP-Seharose chromatography. b) Verifying the presence of full-length protein in crystals. Lane 1: full-length CTNNBL1 before crystallization; lane 2: protein sample from washed and re-dissolved crystals.
a) b)

Figure S3: Superimposition of the structures of full-length CTNNBL1 (red) and CTNNBL1 ${ }^{\text {SF }}$ (blue). NAM, N-terminal anchoring motif; NTD, N-terminal domain; ARM, armadillo domain; CTD, C-terminal domain. The numbers 1-6 indicate the six ARM repeats within the ARM domain.

NAM

Figure S4: Comparison of the structures of CTNNBL1 and p115 (pdb code 2W3C).

