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Supplementary Figure S1. HDX ratio of intact Nm23-H1 in response to H,O, monitored by mass

spectrometer. Artificial mass increment by protein oxidation was examined D,0O exchange with H,O

as a control.

109-132 F.CIQVGRNIIHGSDSVESAEKEIGL.W

: TOF MS ES+
+ H202 5.0mM + D20 3min 857.38 gg7 71 93

856.69 857.05
853.48 853.85 855.00 gs5 40 856.02

858.35 858.67

TOF MS ES+

49
851.45
852.40852.59 85341
T T
10 856.36 B856.71 857.04 104

857.73
858.40 85904

g855.71 856.04

38185145 85247 85297 85437 855.05

T I
100

856,37 856.69 857.05 251

59

854.05 2.26e3
853.72 Pt

3 853.41
85244 85308

852.06 852.39 852.74 1.10e3
° MM*M
85542
0 T | A X | l | | 7 T— miz
852 853 854 855 856 857 858 859

Supplementary Figure S2. HDX ratio on 109-132 residues in native and to 5 mM H,O, treated

Nm23-H1 was summarized.



Supplementary Figure S3. Electrostatic surface potentials of Nm23-H1 (a) Oxidized Nm23-H1.
Molecular surfaces were created by the VMD molecular graphics software package (Humphrey et al.,
1996) after electrostatic calculations using APBS (Baker et al., 2001) (red, negative; blue, positive;
white, uncharged). One of subunits is represented with the ribbon model colored by domain. (b) Wild
type Nm23-H1. In both (a) and (b), the right figure is obtained by rotating the left through 90° along

the X-axis.



Supplementary Figure S4. Diagrams of functionally important regions of Nm23-H1. (a) Interface
interaction. Two hydrogen bonds between the K-pn loop region (light gray) and the C-terminal
domain (tan) of another subunit in the native form. These hydrogen bonds are broken by oxidative
stress. (b) Superposition of active sites. The energy minimized model of the sulfonylated form
(yellow) is superposed with the ADP-bound forms (light gray; PDB ID: 2HVE). The residues

interacting with ADP are represented and labeled. Gly113 is marked with “*”.



Supplementary Figure S5. Diagrams of Nm23-H1 indicating two interfaces with a large difference
in HDX ratio. The blue represents dimeric interfaces and red for the K-pn loop regions. The figure on

the right is obtained by rotating the left through 90° along the X-axis.



Supplementary Figure S6. The energy minimized model of glutathionylated Nm23-H1. The residues
interacting with glutathione are represented and labeled. Glutathione forms a disulfide bond with
Cys109. The average distances of hydrogen bonds of GSH with Arg18 and Arg114 are 2.85 A and

2.80 A, respectively.



