Supplementary Material

Supplementary Figure Legends

Fig. S1
The elution pattern of apo GPPMT from size exclusion chromatography using S200 10/300 column (GE healthcare, Fairfield, USA) is shown in red. Retention volumes of standard proteins are shown in blue with their molecular weights.

Fig. S2
Hydrophobic interaction and hydrogen bond formation between monomers of hexameric GPPMT related with point group 32. From (a) to (e), the apo- structures are shown. In (f), the SFG/GPP complex structure is shown. In order to clarify, it is defined that monomers $\mathrm{A}-\mathrm{B}$ and monomers $\mathrm{A}-\mathrm{C}$ are related with two-fold rotation, thus monomers B-C is related with three-fold rotation. (a) Hydrogen bonds between crystallographically two-fold related monomer A (green) and monomer B (magenta) are shown with dotted lines. Numbers indicate distance between two atoms. Residues from monomer B is indicated with a prime sign next to residue numbers. (b) Residues making hydrophobic interactions between monomer A (green stick with green surface) and monomer A (magenta stick) are shown. Residues from monomer B is indicated with a prime sign next to residue numbers. (c) Hydrogen bonds between crystallographically two-fold related monomer A (green) and monomer C (light blue) are shown with dotted lines. Numbers indicate distance between two atoms. Residues from monomer C is indicated with a prime sign next to residue numbers. (d) Residues making hydrophobic interactions between monomer A (green stick with green surface) and monomer C (light blue stick) are shown. (e) The monomer B-C interface related with three-fold rotation axis. Two residues at the interface which are hydrogen bonded are described with distance. Residue from monomer C is indicated with a prime sign next to residue number. (f) Hydrogen bonds and hydrophobic interaction only observed in SFG/GPP complex structure. Monomer A (green) - C (light blue) is related with NCS two-fold axis. Residues from monomer C is indicated with a prime sign next to residue numbers.

Fig. S3
Amino acid sequence alignment of GPPMT and structurally homologous proteins by CLUSTALW (Thompson et al., 1994) and ESPRIPT (Gouet et al., 2003). The secondary structure of GPPMT (substrate-bound form) is also shown with typically conserved motifs. Identical residues are highlighted in red, and similar residues are framed in black with red letters. Putative catalytic base of GPPMT is marked with a blue star. Residues recognizes SAM are marked with blue circles.

Fig. S4
Enzymatic activity monitored by capillary GC-MS (Shimadzu GC-MS-QP2010). (a) Reaction scheme catalyzed by GPPMT. (b) Retention time (horizontal axis) of substrate (GPP and SAM) enzyme mixture from gas chromatography of each sample as labeled in the inset. The vertical axis indicates intensity. The signals observed around 5 min are from hydrolyzed product of GPP (geraniol), the signals around 5.8 min are from hydrolyzed product of 2-methyl GPP (2-methyl geraniol). (c) GC-MS spectra of geraniol
with m / z along the horizontal axis and relative intensity of the signal for each component along the vertical axis. (d) GC-MS spectra of 2-methyl geraniol.

Fig. S5
Amino acid sequence alignment of GPPMT , IPPMT, and representative of sterol 24-C-methyltransferase (EC. 2.1.1.41), cycloartenol 24-C-methyltransferase (EC. 2.1.1.142), and 24-methylenesterol C-methyltransferase (EC. 2.1.1.143). The protein designations are as follows; GPPMT, GPPMT from Streptomyces lasaliensis; Lon23, IPPMT from Streptomyces argenteolus; EC.2.1.1.41_Pichia , sterol 24-C-methyltransferase from Pichia pastoris; EC.2.1.1.41_Cryptococcus, sterol 24-C-methyltransferase from Cryptococcus gattii; EC.2.1.1.42_Candida, 24-C-methyltransferase from Candida albicans; EC.2.1.1.42_Saccharomyces, sterol 24-C-methyltransferase from Saccharomyces cerevisiae; EC.2.1.1.43_Arabidopsis, 24-methylenesterol C-methyltransferase from Arabidopsis thaliana; EC.2.1.1.43_Glycine, sterol 24-C methyltransferase from Glycine max.

Fig. S6
Proposed biosynthesis pathway of KS-505a (longestin). IPP methylation with IPPMT (Lon23) to produce Z-3-methyl IPP (mIPP) was experimentally confirmed. Methyl groups introduced are shown in pink circle.

Supplementary Table S1
Primer sequences used for generating mutants are listed on the table below. Bases changed for mutagenesis are underlined.

mutants	Forward primer	Reverse primer
Y59F	CTCTACCACCACCACTTCGGCATCGGT GCCGTG	CACGGCACCGATGCCGAAGTGGTGGT GGTAGAG
E181D	CCTCGTGGAACAACGATTCGAGCATGT ACGTCG	CGACGTACATGCTCGAATCGTTGTTCC ACGAGG
E181A	CTCGTGGAACAACGCGTCGAGCATGT ACGTCGAC	GTCGACGTACATGCTCGACGCGTTGTT CCACGAG

References

Gouet, P., Robert, X. \& Courcelle, E. (2003). Nucleic Acids Res. 31, 3320-3323.
Thompson, J. D., Higgins, D. G. \& Gibson, T. J. (1994). Nucleic Acids Res. 22, 4673-4680.

Fig. S1

Fig. S2
(a)
$G \ln ^{291} \operatorname{Asp}^{256}$

(b)

(c)

(e)

(d)

(f)

$\alpha 1$

eleepelee

$\alpha 2$
eleelelele
0

TT 60

GPPMT .. MAAASAPVPGPGGASSTARGRIPAPATPYQEDIARYWNNEARPVNLRLGDVDGLYHHHYGIGAVDHAA

Hma
CmaA1
CmaA2
PcaA
 MGAQPPVTDTIQENMTRMAEKPISPTKTRTRFEDIQAHYDVSDDFFALFQDPT.....RTYSCAYFEPPE . MPDELKPHFANVQAHYDLSDDFFRLFLDPT . QTYSCAYFERDD MTSQQD. TTSGTQLKPPVEAVRSHYDKSNEFFKLWLDPS. . . . MTYSCAYFERPD

GPPMT LídPGDGGYEARLIAELHRLESAQAEFLDDH Lig PVGPDTLVDAGCGRGGSMVMAHQRFGCKVEGVTLSA RebM VS............VDDATDRLTDEMIALID.VRSGDRVLDVGCGIGKPAVRTATARDVRVTGISISR
Hma
CmaA1
CmaA2
PcaA
(a)
(b)

(c) time [min]

(d)

GPPMT_Streptomyces
on23 streptomyce
EC.2.1.1.41_Pichia
EC.2.1.1.41_Cryptococcus
EC.2.1.1.42-Candida
EC.2.1.1.42_Saccharomyces
EC.2.1.1.43 Arabidopsis
EC.2.1.1.43 Glycine

$50 \quad 60$
70
80
90
100
110 . PVNLRLGDVDGLYHHHYGTGAVDHALGDPGDGGYEARLIAELHRLESAQAEFLRDHLGPVGPGDTLVI DQINLLIGEEDGLYHHHFGIGDFDRSVADLPPEE.RESRVLEEMHSLENTQVETLIGALGDVPRDARLLD HS . . RKSDYSELTKHYYNL. VTDFYEYGWGSSFHFSRYYRGEAFRQATARHEHYLALKMGITENMKVLD THRANRLDQYTEVVNGYYDG:ATELYEYGWSESFHFCRFYKGEAFQQALARHEHYEASMMQLKPGMRVLD EK...RLNDYSQLTHHYYNL. VTDFYEYGWGSSFHFSRYYKGEAFRQATARHEHFLAHKMNGNENMKVLD
ER...RLEDYNEATHSYYNV VTDFYEYGWGSSFHFSRFYKGESFAASIARHEHYLAYKAGIQRGDIVLD
 ET.... ADKVPDFVDTFYNL. VTDIYEWGWGQSFHESPSIPGKSHRDATRLHEEMAVDLIEAKPGNRILD

GPPMT_Streptomyces
Lon23 streptomyces
EC.2.1.1.41_Pichia
EC.2.1.1.41_Cryptococcus
E.2.1.1.42 Candida

EC.2.1.1.42 Saccharomyces EC.2.1.1.43 Arabidopsis EC.2.1.1.43-Glycine

180
GPPMT_streptomyces
Hon23 streptomyces
EC.2.1.1.41_Pichia
EC.2.1.1.41_Cryptococcus EC.2.1.1.42_Candida EC.2.1.1.42_Saccharomyces C.2.1.1.43_Arabidopsis EC.2.1.1.43_Glycine

GPPMT_Streptomyces on23 Streptomyces
EC.2.1.1.41 Pichia
EC.2.1.1.41 ${ }^{-}$Cryptococcus
E.2.1.1.42 Candida

EC.2.1.1.42-saccharomyces
EC.2.1.1.43 Arabidopsis
EC.2.1.1.43_Glycine

[^0]

KS-505a (longestin)

[^0]: $290 \quad 300$
 DGS FiqYVLIAADRVL
 SDRINYILIVAERV

 IYSVGQSLIVAAKAKGGELKLFTPMMLYVARKPLDAK
 SKQVTHALEDAAVNLVEGGRQKLFTPMMLYVVRKPLEKKD
 SKEVTAALENAAVGLVAGGKSKLFTPMMLFVARKPENAETPSQTSQEATQ
 TVDVHKMLFKTADYLTRGGETGIFSPMHMILCRKPEKASE
 IVDVHEMLFKTADYLTRGGDSGIFSPMHMILCRKPHDKDDHN.

