Supplementary Material

Supplementary Table S1: Oligonucleotides used for the generation of the $XccFimX^{EAL}$ and $XccPilZ_{1028}$ variants.

	Oligonucleotides	Sequences (5'-3')		
$\mathit{Xcc}FimX^{EAL}$	EAL-Q40A (f)	GCTGGAGCTGTATGCGGCGTTCCTGCG		
	EAL-Q40A (r)	CGCAGGAACGCCGCATACAGCTCCAGC		
	EAL-F42A (f)	CTGTATCAGGCGGCCCTGCGGCTGGAG		
	EAL-F42A (r)	CTCCAGCCGCAGGGCCGCCTGATACAG		
	EAL-S53A (f)	TGGCGAGATGATGGCGCCGAATGCG		
	EAL-S53A (r)	CGCATTCGGCGCCATCATCTCGCCA		
	EAL-R97A (f)	CACCTGCTGGTGGCCATCGGGCCCAA		
	EAL-R97A(r)	TTGGGCCCGATGGCCACCAGCAGGTG		
	EAL-E159A (f)	AGGTGGGGCTGGCGCAATTCGGTTC		
	EAL-E159A (r)	GAACCGAATTGCGCCAGCCCACCT		
	EAL-E216A (f)	TCACGGTGGCCGCGTTCGTGGCCGA		
	EAL-E216A (r)	TCGGCCACGAACGCGGCCACCGTGA		
	EAL-F217A (f)	ACGGTGGCCGAGGCCGTGGCCGATGC		
	EAL-F217A (r)	GCATCGGCCACGGCCTCGGCCACCGT		
Xcc Pil Z_{1028}	PilZ-K30A (f)	CCGTTCGTGGCAAGTGGCGGCATCTTCGTG		
	PilZ-K30A (r)	CCGCCACTTGCCACGAACGGCATGTAGGCG		
	PilZ-G45A (f)	CGCTACATGCTGGCCGATGAGGTGTTTCTG		
	PilZ-G45A (r)	CAGAAACACCTCATCGGCCAGCATGTAGCG		
	PilZ-G45V (f)	CGCTACATGCTGGTCGATGAGGTGTTTCTG		
	PilZ-G45V (r)	CAGAAACACCTCATCGACCAGCATGTAGCG		
	PilZ-K66A (f)	TCCCGGTCGCCGGCGCGTGGTGTGGACCA		
	PilZ-K66A (r)	TGGTCCACACCACCGCGCGCGACCGGGA		

Supplementary Table S2: Interaction distances in the binary $XccFimX^{EAL}$ –c-di-GMP and ternary $XccFimX^{EAL}$ –c-di-GMP– $XccPilZ_{1028}$ complexes

Xcc Fim X^{EAL}		c-di-GMP		XccPilZ ₁₀₂₈
\mathbf{D}^{71} - $\mathbf{O}^{\delta 1}$	$(2.51)^{\P}, 4.47$	Gua1-N ¹		
\mathbf{D}^{71} - $\mathbf{O}^{\delta 1}$	(2.24), 4.70	Gua1-N ²		
L ⁴³ -N	(3.33), > 5.0	Gua1-O ⁶		
L ⁴³ -N	(2.96), 4.41	Gua1-N ⁷		
S^{53} - O^{γ}	(2.60), 3.15	P ¹ -O ¹		
R ⁴⁴ -N ^{H1}	(2.77), 2.07	P ¹ -O ¹		
R ⁴⁴ -N ^{H2}	(3.52), 1.92	P^1 - O^2		
R^{44} - N^{H1}	(2.31), 2.65	P^1 - O^2		
R ⁴⁴ -N ^{H2}	(3.70), 3.42	P^1 - O^1		
R ⁴⁴ -N ^{H2}	(3.97), 3.96	Gua2-O2'		
T^{243} - O^{γ}	(3.40), > 5.0	Gua2-O2'		
\mathbf{D}^{238} - $\mathbf{O}^{\delta 1}$	(2.27), > 5.0	Gua2-N ⁷		
\mathbf{D}^{238} - $\mathbf{O}^{\delta 1}$	(> 5.0), 2.09	Gua2-N ¹		
\mathbf{D}^{238} - $\mathbf{O}^{\delta 1}$	(> 5.0), 2.35	Gua2-N ²		
F ²¹⁷ -N	(2.61), > 5.0	Gua2-O ⁶		
\mathbf{E}^{216} - $\mathbf{O}^{\epsilon 1}$	(2.05), > 10.0	Gua2-N ¹		
\mathbf{E}^{216} - $\mathbf{O}^{\epsilon 1}$	(2.29), > 10.0	Gua2-N ²		
R ⁹⁷ -N ^{H1}	(1.90), 2.23	P^2 - O^1		
R ¹⁸³ -N ^{H1}	$(>7.0)^{\ddagger}$, 3.99	Gua2-N ²		
R ¹⁸³ -N ^{H2}	$(>7.0)^{\ddagger}$, 4.58	Gua2-N ²		
		Gua1-O2'	2.27	K^{30} - N^{ζ}
		P^2 - O^2	2.19	K^{66} - N^{ζ}
		Gua2-O2'	2.01	G ⁴⁵ -N
		Gua2-N ³	1.93	G ⁴⁵ -O
		Gua2-N ²	2.99	G ⁴⁵ -O

The values in parenthesis are interaction distances between $XccFimX^{EAL}$ and c-di-GMP while those in the right are between $XccFimX^{EAL}$ – $XccPilZ_{1028}$ complex and c-di-GMP. C-di-GMP Gua1 and Gua2 interactions exhibit the most difference between the two complexes and were listed in bold.

 $^{^{\}dagger}$ The phenyl ring of F²¹⁷ sandwiches between the Gua2 base and guanido group of R¹⁸³.

Supplementary Figure S1. Comparison among the c-di-GMP binding sites of the $Xcc\text{FimX}^{EAL}$, and $Pa\text{FimX}^{EAL}$, and $Pf\text{LapD}^{EAL}$ domains. This figure reveals the dramatically different conformation of c-di-GMP in the $Xcc\text{FimX}^{EAL}$ –c-di-GMP binary complex, compared to other degenerate EAL domain proteins, possibly due to the different tetra-residue motifs surrounding the binding sites.

Supplementary Figure S2. a) Sequence alignments of the type II $XccPilZ_{1028}$ and PA2960. The residues important in recognizing c-di-GMP and $XccFimX^{EAL}$ domain (boxed in red) seem to be conserved between the two sequences. b) Stereo diagram of superimposition between the $XccFimX^{EAL}$ –c-di-GMP– $XccPilZ_{1028}$ ternary complex and the $XccFimX^{EAL}$ –c-di-GMP binary complex and the $XccPilZ_{1028}$ monomer. The $XccFimX^{EAL}$ domain and the $XccPilZ_{1028}$ domain in the ternary complex were drawn in blue cartoon and red cartoon, while the $XccFimX^{EAL}$ domain in the binary complex

and that of the isolated $XccPilZ_{1028}$ domain were drawn in gray cartoon. The side chains of K^{30} , K^{66} , and E^{47} adopt different rotamers to better interact with the c-di-GMP and the $XccPilZ_{1028}$ domain, but the global conformation of the $XccPilZ_{1028}$ domain does not change much.

Supplementary Figure S3. a) ITC titrations of the with the *Xcc*PilZ₁₀₂₈ variants. Almost no heat was released when the complex was titrated with the G45A (left), K30A (middle), and K66A (right) variants. b) Gel filtration chromatography

(Superdex 75) of the $XccFimX^{EAL}$ –c-di-GMP complex with the $XccPilZ_{1028}$ variants. Only small amount of the ternary complex was formed when the $XccFimX^{EAL}$ –c-di-GMP complex was mixed with the G45A (left), K30A (middle), and K66A (right) variants of the $XccPilZ_{1028}$ domain.

Binary XccFimX^{EAL}—c-di-GMP Complex

Supplementary Figure S4. LigPlot (Wallace et al., 1995) of the binary $XccFimX^{EAL}$ –c-di-GMP complex. C-di-GMP is enclosed in blue dotted line, and Gua1 and Gua2 were divided by a pink dotted line.

Ternary XccFimX^{EAL}—c-di-GMPXcc—PilZ₁₀₂₈ Complex

Supplementary Figure S5. LigPlot (Wallace et al., 1995) of the ternary XccFimX^{EAL}-c-di-GMP-XccPilZ₁₀₂₈ complex. C-di-GMP is enclosed in blue dotted line, and Gua1 and Gua2 were divided by a pink dotted line. The amino acid residues from XccPilZ₁₀₂₈ were enclosed in green dotted line.

Supplementary Figure S6. a) Superimposition of type I PilZ domain protein PA4608 in its apo- (PDB:1YWU, cartoons colored in gray) and c-di-GMP bound forms (PDB:2L74, cartoons colored in red). A significant flipping of the N-terminal RxxR signature motif at the hinge residue I¹⁴ is observed when PA4608 binds c-di-GMP (marked by a curved arrow in bluie). Several crucial residues in the signature motif are marked with residue numbers. The carbon atoms of c-di-GM in 2L74 are colored in green. b) Superimposition of type II PilZ domain protein Xcc1028 in its apo-

(PDB:3DSG cartoons colored in red) and $FimX^{EAL}$ -c-di-GMP-bound forms (cartoons colored in gray). No major backbone conformational changes are detected.