Supplementary Material **Supplementary Table S1**: Oligonucleotides used for the generation of the $XccFimX^{EAL}$ and $XccPilZ_{1028}$ variants. | | Oligonucleotides | Sequences (5'-3') | | | |--|------------------|--------------------------------|--|--| | $\mathit{Xcc}FimX^{EAL}$ | EAL-Q40A (f) | GCTGGAGCTGTATGCGGCGTTCCTGCG | | | | | EAL-Q40A (r) | CGCAGGAACGCCGCATACAGCTCCAGC | | | | | EAL-F42A (f) | CTGTATCAGGCGGCCCTGCGGCTGGAG | | | | | EAL-F42A (r) | CTCCAGCCGCAGGGCCGCCTGATACAG | | | | | EAL-S53A (f) | TGGCGAGATGATGGCGCCGAATGCG | | | | | EAL-S53A (r) | CGCATTCGGCGCCATCATCTCGCCA | | | | | EAL-R97A (f) | CACCTGCTGGTGGCCATCGGGCCCAA | | | | | EAL-R97A(r) | TTGGGCCCGATGGCCACCAGCAGGTG | | | | | EAL-E159A (f) | AGGTGGGGCTGGCGCAATTCGGTTC | | | | | EAL-E159A (r) | GAACCGAATTGCGCCAGCCCACCT | | | | | EAL-E216A (f) | TCACGGTGGCCGCGTTCGTGGCCGA | | | | | EAL-E216A (r) | TCGGCCACGAACGCGGCCACCGTGA | | | | | EAL-F217A (f) | ACGGTGGCCGAGGCCGTGGCCGATGC | | | | | EAL-F217A (r) | GCATCGGCCACGGCCTCGGCCACCGT | | | | Xcc Pil Z_{1028} | PilZ-K30A (f) | CCGTTCGTGGCAAGTGGCGGCATCTTCGTG | | | | | PilZ-K30A (r) | CCGCCACTTGCCACGAACGGCATGTAGGCG | | | | | PilZ-G45A (f) | CGCTACATGCTGGCCGATGAGGTGTTTCTG | | | | | PilZ-G45A (r) | CAGAAACACCTCATCGGCCAGCATGTAGCG | | | | | PilZ-G45V (f) | CGCTACATGCTGGTCGATGAGGTGTTTCTG | | | | | PilZ-G45V (r) | CAGAAACACCTCATCGACCAGCATGTAGCG | | | | | PilZ-K66A (f) | TCCCGGTCGCCGGCGCGTGGTGTGGACCA | | | | | PilZ-K66A (r) | TGGTCCACACCACCGCGCGCGACCGGGA | | | **Supplementary Table S2**: Interaction distances in the binary $XccFimX^{EAL}$ –c-di-GMP and ternary $XccFimX^{EAL}$ –c-di-GMP– $XccPilZ_{1028}$ complexes | Xcc Fim X^{EAL} | | c-di-GMP | | XccPilZ ₁₀₂₈ | |--|----------------------------|--------------------------------|------|-------------------------| | \mathbf{D}^{71} - $\mathbf{O}^{\delta 1}$ | $(2.51)^{\P}, 4.47$ | Gua1-N ¹ | | | | \mathbf{D}^{71} - $\mathbf{O}^{\delta 1}$ | (2.24), 4.70 | Gua1-N ² | | | | L ⁴³ -N | (3.33), > 5.0 | Gua1-O ⁶ | | | | L ⁴³ -N | (2.96), 4.41 | Gua1-N ⁷ | | | | S^{53} - O^{γ} | (2.60), 3.15 | P ¹ -O ¹ | | | | R ⁴⁴ -N ^{H1} | (2.77), 2.07 | P ¹ -O ¹ | | | | R ⁴⁴ -N ^{H2} | (3.52), 1.92 | P^1 - O^2 | | | | R^{44} - N^{H1} | (2.31), 2.65 | P^1 - O^2 | | | | R ⁴⁴ -N ^{H2} | (3.70), 3.42 | P^1 - O^1 | | | | R ⁴⁴ -N ^{H2} | (3.97), 3.96 | Gua2-O2' | | | | T^{243} - O^{γ} | (3.40), > 5.0 | Gua2-O2' | | | | \mathbf{D}^{238} - $\mathbf{O}^{\delta 1}$ | (2.27), > 5.0 | Gua2-N ⁷ | | | | \mathbf{D}^{238} - $\mathbf{O}^{\delta 1}$ | (> 5.0), 2.09 | Gua2-N ¹ | | | | \mathbf{D}^{238} - $\mathbf{O}^{\delta 1}$ | (> 5.0), 2.35 | Gua2-N ² | | | | F ²¹⁷ -N | (2.61), > 5.0 | Gua2-O ⁶ | | | | \mathbf{E}^{216} - $\mathbf{O}^{\epsilon 1}$ | (2.05), > 10.0 | Gua2-N ¹ | | | | \mathbf{E}^{216} - $\mathbf{O}^{\epsilon 1}$ | (2.29), > 10.0 | Gua2-N ² | | | | R ⁹⁷ -N ^{H1} | (1.90), 2.23 | P^2 - O^1 | | | | R ¹⁸³ -N ^{H1} | $(>7.0)^{\ddagger}$, 3.99 | Gua2-N ² | | | | R ¹⁸³ -N ^{H2} | $(>7.0)^{\ddagger}$, 4.58 | Gua2-N ² | | | | | | Gua1-O2' | 2.27 | K^{30} - N^{ζ} | | | | P^2 - O^2 | 2.19 | K^{66} - N^{ζ} | | | | Gua2-O2' | 2.01 | G ⁴⁵ -N | | | | Gua2-N ³ | 1.93 | G ⁴⁵ -O | | | | Gua2-N ² | 2.99 | G ⁴⁵ -O | The values in parenthesis are interaction distances between $XccFimX^{EAL}$ and c-di-GMP while those in the right are between $XccFimX^{EAL}$ – $XccPilZ_{1028}$ complex and c-di-GMP. C-di-GMP Gua1 and Gua2 interactions exhibit the most difference between the two complexes and were listed in bold. $^{^{\}dagger}$ The phenyl ring of F²¹⁷ sandwiches between the Gua2 base and guanido group of R¹⁸³. **Supplementary Figure S1**. Comparison among the c-di-GMP binding sites of the $Xcc\text{FimX}^{EAL}$, and $Pa\text{FimX}^{EAL}$, and $Pf\text{LapD}^{EAL}$ domains. This figure reveals the dramatically different conformation of c-di-GMP in the $Xcc\text{FimX}^{EAL}$ –c-di-GMP binary complex, compared to other degenerate EAL domain proteins, possibly due to the different tetra-residue motifs surrounding the binding sites. **Supplementary Figure S2**. a) Sequence alignments of the type II $XccPilZ_{1028}$ and PA2960. The residues important in recognizing c-di-GMP and $XccFimX^{EAL}$ domain (boxed in red) seem to be conserved between the two sequences. b) Stereo diagram of superimposition between the $XccFimX^{EAL}$ –c-di-GMP– $XccPilZ_{1028}$ ternary complex and the $XccFimX^{EAL}$ –c-di-GMP binary complex and the $XccPilZ_{1028}$ monomer. The $XccFimX^{EAL}$ domain and the $XccPilZ_{1028}$ domain in the ternary complex were drawn in blue cartoon and red cartoon, while the $XccFimX^{EAL}$ domain in the binary complex and that of the isolated $XccPilZ_{1028}$ domain were drawn in gray cartoon. The side chains of K^{30} , K^{66} , and E^{47} adopt different rotamers to better interact with the c-di-GMP and the $XccPilZ_{1028}$ domain, but the global conformation of the $XccPilZ_{1028}$ domain does not change much. **Supplementary Figure S3**. a) ITC titrations of the with the *Xcc*PilZ₁₀₂₈ variants. Almost no heat was released when the complex was titrated with the G45A (left), K30A (middle), and K66A (right) variants. b) Gel filtration chromatography (Superdex 75) of the $XccFimX^{EAL}$ –c-di-GMP complex with the $XccPilZ_{1028}$ variants. Only small amount of the ternary complex was formed when the $XccFimX^{EAL}$ –c-di-GMP complex was mixed with the G45A (left), K30A (middle), and K66A (right) variants of the $XccPilZ_{1028}$ domain. Binary XccFimX^{EAL}—c-di-GMP Complex **Supplementary Figure S4**. LigPlot (Wallace et al., 1995) of the binary $XccFimX^{EAL}$ –c-di-GMP complex. C-di-GMP is enclosed in blue dotted line, and Gua1 and Gua2 were divided by a pink dotted line. Ternary XccFimX^{EAL}—c-di-GMPXcc—PilZ₁₀₂₈ Complex **Supplementary Figure S5**. LigPlot (Wallace et al., 1995) of the ternary XccFimX^{EAL}-c-di-GMP-XccPilZ₁₀₂₈ complex. C-di-GMP is enclosed in blue dotted line, and Gua1 and Gua2 were divided by a pink dotted line. The amino acid residues from XccPilZ₁₀₂₈ were enclosed in green dotted line. **Supplementary Figure S6**. a) Superimposition of type I PilZ domain protein PA4608 in its apo- (PDB:1YWU, cartoons colored in gray) and c-di-GMP bound forms (PDB:2L74, cartoons colored in red). A significant flipping of the N-terminal RxxR signature motif at the hinge residue I¹⁴ is observed when PA4608 binds c-di-GMP (marked by a curved arrow in bluie). Several crucial residues in the signature motif are marked with residue numbers. The carbon atoms of c-di-GM in 2L74 are colored in green. b) Superimposition of type II PilZ domain protein Xcc1028 in its apo- (PDB:3DSG cartoons colored in red) and $FimX^{EAL}$ -c-di-GMP-bound forms (cartoons colored in gray). No major backbone conformational changes are detected.